

THE STAR - GUIDE

LATIMER CLARK F.R.A.S. AND HERBERT SADLER F.R.A.S.

on

Dec 1/89

THE

STAR-GUIDE

THE

STAR-GUIDE

A LIST OF THE

MOST REMARKABLE CELESTIAL OBJECTS

VISIBLE WITH SMALL TELESCOPES

WITH

THEIR POSITIONS

FOR EVERY TENTH DAY IN THE YEAR
AND
OTHER ASTRONOMICAL INFORMATION

BY

LATIMER CLARK, FR.A.S. AND HERBERT SADLER, F.R.A.S.

LONDON MACMILLAN AND CO. 1886

PRINTED BY SPOTTISWOODE AND CO., NEW-STREET SQUARE LONDON

.

4

QBLA CL

INTRODUCTION.

THE first portion of this little work is intended primarily to serve as an introduction to the sidereal portion of 'Celestial Objects for Common Telescopes,' the well-known work of the late deeply regretted Prebendary Webb, and is designed for the use of those who possess small telescopes of from two to four inches aperture and upwards, by reminding them what objects to look for at each period of the year, and where to look for them. Many amateurs who are just commencing the study of Astronomy experience some difficulty in the selection of those objects, out of the countless number in the heavens, which are best suited for observation with small telescopes, and are apt to strain their eyes and waste their time in fruitless endeavours to catch faint nebulæ or to separate difficult double stars, which can only really be observed with much larger telescopes than most beginners usually possess. It is hoped, therefore, that to such, a carefully selected list, on a definite plan, excluding all objects which are beyond the grasp of small telescopes, and including nearly all those which can be profitably examined with instruments of from two to three inches of aperture, may be of use. With this view a list of nearly six hundred of the most interesting and beautiful objects visible in the northern heavens with instruments of this description, has been arranged in a tabular form in order of Right Ascension, which the authors hope will be found to contain nearly every double star between the North Pole and 15° South Declination, which can be seen easily with an achromatic of small aperture. The positions and times of transit are given for each tenth day in the year. With very few exceptions no double star

has been inserted the brightest component of which falls below the seventh magnitude—the magnitude of the smallest of the satellites of Jupiter—or the fainter of which is not brighter than a tenth magnitude star, or any pairs which are too close to be conveniently seen in a telescope of small size. No red star has been included the colour of which cannot be seen, or any nebula or cluster which cannot conveniently be observed with such an instrument.

In the first column of the following list of objects visible with small telescopes the name of the star is given; all those to which Bayer assigned a Greek letter, or those numbered and catalogued by Flamsteed, Bode, or Piazzi, being designated by such letter or number. Flamsteed's numbers precede the name of the constellation to which they refer, e.g. 77 Pegasi ; but as all Bayer's lettered stars have also numbers assigned to them by Flamsteed, the latter have been omitted. Piazzi's are numbered according to the hour of Right Ascension in which they happened to fall in the year 1800, e.g. P. iii. 98 (Eridani); while Bode's numbers follow the name of the constellation, as Coronæ I. In one or two cases the star has been entered according to its number in the catalogue published by the British Association, as B. A. C. 352 (Andromedæ). In order to avoid all unnecessary technicalities, where a star, either from its comparative faintness or for some other reason, has failed to receive a Greek letter or one of Flamsteed's or Piazzi's numbers, it has been entered simply as a red star or pair in such and such a constellation. Thus the seventh object in the list is entered as 'Pair in Cassiopeia,' with a Right Ascension of 23^h 55^{·5^m}, and a North Declination of 59° 43'. The principal star of this pair is known to astronomers as A.Oe,. 26,287 (or O. Arg. N. 26,287), meaning that it is number 26,287 in a catalogue of stars between 45° and 80° North Declination, whose places were determined by Argelander, and that the catalogue was edited by Oeltzen, in the third series of the Annals of the Vienna Observatory, from which we have deduced its apparent place in the list for January 1886. As a pair it is termed $O\Sigma\Sigma$ (or $O\Sigma^2$) 254, which refers to its number, 254, in a catalogue of double stars observed by O. Struve. Such details, however, are out of place in a list like the present. In the same manner nebulæ

and clusters have been entered as 'Cluster in Cepheus,' 'Nebula in Cetus,' &c., without giving their numbers in the catalogues of Messier, Sir W., or Sir J. Herschel.

The second column is headed 'Visible,' and is simply intended to show observers at a glance during what months of the year the several objects in the lists may be most conveniently observed.

The third and fourth columns contain the Right Ascension and Declination of the objects, given to the nearest tenth of a minute of time in Right Ascension and the nearest minute of arc in Declination, and reduced to January 1, 1886. All the star places throughout the book have been brought up to this epoch.

The next four columns contain the sidereal time at 9 P.M. on the 1st, 11th, 21st, and last day of every month, and the mean time of transit at Greenwich of every object on those days. Thus the list for each month includes nearly fifty objects which pass the meridian at convenient hours for observation. The observer, however, is by no means confined to the list for each month alone, or to the southern part of the heavens. He may often desire to examine objects in the eastern skies, which may be found, not in the list for the month, but in the lists for the next following month : or he may desire to observe western stars, which will be found in the preceding months. These lists should, therefore, constantly be referred to. The stars transit every day 3^m 55'91^s (or say 4 minutes) earlier than on the preceding day. A star which souths at ten to-night must, therefore, have southed two hours later a month ago, and will south two hours earlier a month hence. Remembering this, and looking at the position of the star, we can easily judge which list to consult. Suppose that on October 20 we desire to observe certain stars in the western heavens. We know from their position that they will be found in the list of stars some two or three months before; we therefore search the July and August lists, and adding, say, 31 days for August, 30 for September, and 20 for October, we find the interval since July 31, to be 81 days. Allowing 3^m 56^s per diem for acceleration,¹ we get 5^h 18^m to be subtracted from the times given on July 31, and

¹ For the convenience of reckoning a table of these accelerations will be found at page 26.

this will give us the time of southing of all the stars in the July list which are still visible to us. Similarly, for eastern skies, we know that the stars will south at convenient hours some two or three months hence, and will be found probably in the January list. We count, therefore, 72 days to January I, and *adding* 4^{h} 43^{m1} to any of the stars in that list, we get their time of southing this evening. Before observing it is convenient to take out these times from the table, and to write them (in an abbreviated form) on a card. Thus for October 20 we have—

List of Stars	Interval in Days	Time to be SUBTRACTED	List of Stars	Interval in Days	Time to be ADDED	
July 31 August 31 . September 30	81 50 20	h. m. 5 18 3 17 1 19	November I . December I . January I .	11 41 72	h. m. 0 43 2 41 4 43	

We are now in a position to find instantly the time of transit of any object in any of the lists from July to January. In making these notes the observer of course includes at the same time the correction (if necessary) due to his difference in longitude. If his station be westward of Greenwich, he must subtract the correction from the left hand column and add it to the right, and vice verså.

The next, or ninth, column contains the distances of the double stars, measured from centre to centre of the stars, and expressed in seconds and tenths of a second of arc. The succeeding column contains the position angle, or the angle of inclination to the meridian, of the smaller star as referred to the larger one of the pair. The following diagram, in which the arrow indicates the direction of motion through the field, will serve to explain the method of expressing position angles at present adopted. Up to about 1820, it was usual to reckon by quadrants, *i.e.* 10°*nf* answered to 80° in our present mode of reckoning, 10°*sf* to 100°, 10°*sp* to 260°, and 10°*np* to 280°. It is, perhaps, as well to remind observers that the present mode of reckoning position angles is not that used in the prediction of occultations in the 'Nautical Almanac,'

¹ For the convenience of reckoning a table of these accelerations will be found at page 26.

viii

where the initial point is taken at the top, or south, and the angles are reckoned round towards the right hand in the direction of the

revolution of the hands of a watch, 180° being at the north, or bottom. Great care has been taken in the selection of the measures in columns nine and ten, and the latest and best ones published up to the end of November 1885 have been given where possible. In the cases of binaries of quick revolution and stars with large proper motion, the position angles and distances have usually been roughly computed for the season in 1886 at which they appear in the lists where no very recent measures could be obtained of them by practised observers.

The eleventh column contains the magnitudes of the stars. In view of the great and, to beginners, most perplexing differences in the values assigned to the same star in the scales used by different astronomers, it has been thought well to adhere to one scale throughout the book, and for this purpose W. Struve's has been selected, as it is the one almost universally used by the great double star observers on the Continent and in America. The wellknown English observer, Admiral Smyth, used a scale of his own, nearly agreeing with Sir John Herschel's, for the faint stars, and for the brighter he usually adopted the magnitudes assigned to the stars by Piazzi in his Palermo catalogue, estimating the magnitude of the

fainter component by a comparison of its light with that of the larger star, as given by Piazzi; but where Piazzi gives both components of a double star Smyth usually adopted his magnitude of both. The following little table, which is copied from one in the *English Mechanic* for March 24, 1882, is the result of a direct collation of Smyth's magnitudes with Struve's, the magnitudes in Smyth above 9.5 being generally assumed from Piazzi, when the stars are found in the catalogue of that astronomer :—

Smyth Mag.		Struve Mag.		Smyth Mag.		Struve Mag.	
9.5	=	8.78	1.1	13	-	10.62	10.0
IO	=	9.18		14	=	10.361	1112
II	=	10.10		15}	==	10.99	
12	=	10.12		165			

The following comparison by Sir John Herschel of his own magnitudes with those of Struve is copied from his table in vol. 38 of the 'Memoirs of the Royal Astronomical Society.' It must, however, be only considered to apply to his earliest catalogues of double stars, as he himself observes that the magnitudes in his later catalogues show a tendency to creep up in the scale, *i.e.* a 19th or 20th magnitude in his first catalogue would probably only be rated as a 16th in his sixth catalogue ; and it will be found that a star called by him a 20th magnitude in his later observations corresponds more nearly with 13^o than 12^o in Struve's² scale. The magnitudes down to the seventh are fairly accordant.

H. Mag.		Σ Mag.		H. Mag.		Σ Mag.	1, 6723	H. Mag.		۶ Mag.
8	=	7.30		11.2	=	9.60	in the second	15	=	10.87
8.5	=	7.70		12	=	9.80	-	16	=	11.13
9	=	8.10	1.5	12.5	=	10.00	1.00	17	=	11.38
9.5	=	8.50		13	=	10.18	3	18	-	11.91
IO	-	8.80		13.2	=	10.36	-	19	=	11.82
10.2	=	9.10	8 18	14	-	10.24		20	=	12.00
11	=	9.30	1915	14.5	=	10.21	12			

¹ See 'English Mechanic' supra.

² W. Struve's name is usually conventionally expressed by the Greek capital letter Σ , and his son's, O. Struve, the present director of the Imperial Russian Observatory at Pulkova, by $O\Sigma$.

x

In the present work the magnitudes of many of the brighter stars have been inserted from the Oxford photometrical determinations in vol. 47 of the 'Memoirs of the Royal Astronomical Society,' ¹ and the others have been taken from the great work of the late Baron Dembowski, 'Misure Micrometriche di Stelle Doppie e Multiple,' which has lately been edited by Schiaparelli and O. Struve, in nearly every case where the stars are to be found in that work. In other cases they have been taken from the micrometrical observations of Mr. Burnham. The magnitudes of the red stars have been taken from Birmingham's 'Red Star Catalogue' and other sources. In the case of clusters the magnitudes of the brightest and faintest stars in each cluster have been set down.

In the last column are inserted the colours of the stars, which in the case of the double stars have been almost always taken from Dembowski. The discordances in the colours assigned by different astronomers to various stars, even where their observations have been made at the same epoch, are so very marked, that it has been thought advisable that these determinations should rest as far as possible on the authority of one observer only. This column contains also a few brief remarks on the character of some of the objects, which are supplemented in certain cases of interest by concise notes at the foot of each page. A considerable margin has been left for the observer's own notes. A list of about two hundred objects which can be seen with refractors of from four to seven inches aperture, has been added for the convenience of those amateurs who may possess telescopes of this size. A certain proportion only are visible, of course, with but four inches of aperture, but all should be seen with seven. Considerable care has been taken in the selection of the most interesting and beautiful objects within the grasp of telescopes of this size for the list, which is arranged in substantially the same way as the preceding one; the times of transit and the column containing the colours and remarks have, however, been omitted.

¹ The Uranometria Nova Oxoniensis was published too late to enable us to make use of the determinations of magnitude which it contains.

Test Objects.

The list of test-objects contains two hundred and fifty stars, which have been selected as tests of the quality of refracting telescopes of from two to seven inches aperture. The stars have been divided into three kinds of tests, viz. dividing tests, defining tests, and space-penetrating tests. Twelve double stars have been arranged, in descending order of difficulty, as tests of the separating power of telescopes of the aperture given. The first star of these twelve should be easily separated with the aperture employed, as high a magnifying power as the telescope and the air will bear being used, while the last three or four stars will be found to be just at the limit of the separating power of the aperture, this being expressed by the fraction $\frac{4.56''}{a}$. These are followed by a list of six pairs arranged in the same order, which are intended to serve as tests of the defining power of the telescope, its freedom from spherical aberration, and of the perfection of its figure; each pair consisting of a bright star and a faint and comparatively close companion. The last twelve stars (arranged, as the others, approximately in order of difficulty) are designed to serve as tests of the light-grasping power of the instrument and the acuteness of the observer's eye.

The list of the radiant points of some of the most marked showers of shooting stars gives the date of each shower, the Right Ascension and Declination of the radiant point, and the Greenwich mean time of its rising and southing.

Lunar Craters.

The lists of the approximate longitudes and latitudes of over one hundred lunar craters, arranged alphabetically and in order of longitude, beginning at the western limb, is intended to facilitate the employment of the table giving the position of the Lunar

¹ Dawes, Memoirs of the Royal Astronomical Society, vol. xxxv. p. 158. Dallmeyer preferred $\frac{4'33''}{a}$. a=aperture of telescope in inches.

xii

Terminator at midnight on each day of the year. The number in () immediately following the name of each formation refers to the corresponding number on the map of the moon, in the fourth edition of 'Celestial Objects for Common Telescopes,' the numbers enclosed in [] denoting formations near those bearing the number assigned to them by Mr. Webb. The figures i, ii, iii, iv refer to the quadrant in which the crater is situated.

The table giving the position of the Lunar Terminator at midnight for every night in the year gives the selenographical longitude of the point where the terminator (or boundary between light and darkness) crosses the moon's equator (which it does nearly at right angles) at that time. As the terminator moves towards the east at the rate of 30.5' (approximately) per hour,1 we can easily find its position at any other time; e.g. by the table we find the longitude of the terminator at midnight on March 8, 1886, to be 49° 26' west longitude, and we wish to ascertain what will its position be at 8 A.M. the next morning (March 9)? Subtracting 4°4' $(30.5' \times 8)$, as the terminator moves towards the east, we find the longitude of the terminator at 8 in the morning on March 9 is 45° 22' west. In the same way we wish to know when the crater Linné will be on the terminator in January 1886. Turning to the alphabetical table of the longitudes and latitudes of the craters, we find the longitude of Linné to be 11° 33' west, and we find by the tables giving the position of the Lunar Terminator that the moon's terminator was in 10° 44' west at midnight on January 11; the difference is 0° 49' west, or the time of sunrise on Linné will be about 10^h 22^m P.M. (that is, 12 hours less 49 × 2 min.) Similarly, we find that the longitude of the evening terminator at midnight on January 26 was 8° 9', differing 3° 24' from that of Linné, so that sunset on Linné will take place about 5^h 20^m P.M. on that evening. Conversely, we observe that the longitude of the evening terminator at midnight on February 11, 1886, is given in the tables at 6° 15' east, and on referring to the list of craters arranged in order of longitude, we find Mösting, Moretus, and Archimedes A to be near the terminator at that time, being numbers 211, 262, and a

¹ Roughly speaking, 1° for two hours, or 1' for two minutes.

crater very near 120 on Webb's map. On referring to that map, and drawing an imaginary line through these craters, we are enabled to see what other formations are on the terminator about that hour.

Variable Stars, &c.

A list of the maxima and minima of twelve remarkable variable stars, with their places, and a table showing the observable heliocentric maxima of Algol and of the somewhat similar variable star δ Libræ for 1886, will, it is hoped, be found of use to those amateurs who are interested in the study of such phenomena.

A short account of the periodical comets expected in 1886 and of those which, though discovered in 1885, pass their perihelia in 1886, closes the work.

Precession of the Equinoxes.

Owing to precession, the apparent places of the stars alter continually from year to year, both in Right Ascension and in Declination; the change is fortunately very small, and may generally be neglected, as even after several years it is seldom sufficient to prevent a star being found in the field of the telescope. Its amount varies in different parts of the heavens, and the formulæ for its computation are somewhat complex, but the tables given below will enable the observer to correct the places of the stars for this quantity without any very serious error, except in the case of circum-polar stars.

The precession of the Equinoxes is caused by a slow gyratory or twisting motion of the pole of the earth round the pole of the Ecliptic, resembling the movement of a spinning top just before it is going to fall. One twist of the axis occupies about 25,700 years, and during this time it carries the position of the vernal Equinox or first point of Aries backwards completely round the Ecliptic, in a direction contrary to the apparent motion of the sun, thereby continually increasing the apparent Right Ascension of all the heavenly bodies, and also affecting their Declinations; the effect

xiv

on our reckoning of time is the same as if we had gained one day in 25,700 years, or $\frac{1}{25700}$ of a day per annum. This amounts to about 3'I seconds, which is about the annual amount of precession for stars near the Equator.

The effect of precession in Right Ascension is always additive (except in the case of a few stars very near the poles of the Ecliptic). Its amount varies with the Declination of the stars and with their Right Ascension, and is roughly given in the following table :—

Declination	From o ^h to 6 ^h Right Ascension	From 6 ^h to 12 ^h Right Ascension	From 12 ^h to 18 ^h Right Ascension	From 18 ^h to 24 ^h Right Ascension
20° South	3"'I decreasing to 2"6	28.6 increasing to 3"1	3"" increasing to 3"6	3*6 decreasing to 3*1
Equator	3'I secs.	. 3'I secs.	3'I secs.	3'I secs.
20° North	3"1 increasing to 3"6	3"6 decreasing to 3"1	3s'I decreasing to 2s'6	28.6 increasing to 38'1
40° North	3"1 increasing to 4"2	4"2 decreasing to 3"1	3"'I decreasing to 1"'9	18'9 increasing to 3"1
50° North	3s'1 increasing to 4s'7	4s'7 decreasing to 3s'1	3"'I decreasing to 1"5	18'5 increasing to 3"1
60° North	3"1 increasing to 5"4	5"4 decreasing to 3"1	3"'1 decreasing to o"'8	os'8 increasing to 35'

Annual Value of Precession in Right Ascension.

The precession in Declination is additive from 18 hours Right Ascension to 6 hours, and subtractive from 6 hours to 18 hours. It attains its maximum, about 20 seconds of arc per annum, with objects situated at 12 hours Right Ascension and 24 hours Right Ascension, and falls to a minimum of zero at 6 hours and 18 hours. The following table will give an idea of the change produced by it, but

h. m.h. m."h. m.h. m.h. m.0 0 and 24 0 $+20^{\circ}0$ 12 0 and 12 0 $-20^{\circ}0$ I 0 23 019'4I3 0II 019'42 0 22 017'414 010 017'42 30 22 3015'914 309 3015'93 0 2I 014'215 09 014'23 30 20 3012'215 308 3012'24 0 20 010'016 08 010'04 30 19 307'716 307 307'75 010 05'217 07 05'2	Right Ascension	Annual Precession	Annual Precession	
5 30 18 30 2.6 17 30 6 30 2.6	0 0 and 24 0 I 0 23 0 2 0 22 0 2 30 22 30 3 0 21 0 3 30 20 30 4 0 20 0 4 30 19 30 5 0 19 0	+ 20.0 19.4 17.4 15.9 14.2 12.2 10.0 7.7 5.2	12 0 and 12 0 13 0 11 0 14 0 10 0 14 30 9 30 15 0 9 0 15 30 8 30 16 0 8 0 16 7 30 17 0 7 0 7	- 20.0 19.4 17.4 15.9 14.2 12.2 10.0 7.7 5.2

Annual Value of Precession in Declination.

it must be remembered that the table refers to stars with North Declination, and that an addition to the Declination of a northern star corresponds to a subtraction from that of a southern star, and

vice versâ. It will be observed that at the utmost it can only change the declination of any object by 20" per annum, so that by the year 1892 the change will only have amounted to 2', or about three times the apparent diameter of Jupiter when at opposition.

Future Use of the Tables.

The times of transit of all the objects in this book are given for the year 1886, but by a very simple addition they are equally available for all succeeding years. We have only to add one minute for every year, except at leap-years, when we make a deduction. For example :—

1887. Add I minute to the times given.

- 1888. Add 2 minutes before February 28; after that date deduct 2 minutes.
- 1889. Deduct r minute.

1890. Add o minute.

1891. Add 1 minute.

It will be perceived that, although for convenience we abruptly add I minute on January I, the gain is really a continuous one throughout the four years preceding the leap-year. At leap-year we suddenly lose this 4 minutes (or rather 3^m 56^s) owing to the introduction of February 29.

It was originally intended that this work should be published in an annual form under the name of 'Clark's Star Guide,' as a companion volume to Mr. Latimer Clark's annual Transit Tables. As the work progressed it was found difficult to condense the matter satisfactorily into so small a page, and it was therefore thought preferable to issue it in the present more permanent form. The tables giving the daily position of the Lunar Terminator and other matters will be continued in future editions of Clark's Transit Tables.

xvi

BRARY OF THE UNIVERSITY AL FORNIA

A LIST OF

THE MOST REMARKABLE CELESTIAL OBJECTS

VISIBLE WITH SMALL TELESCOPES.

1						No. of Concession, Name
COLOURS AND REMARKS		White, bluish. Colours vary. Greenish white, blue. Ruby, deep blue. 70 variable. Yellow, olive. Binary (3). White, deep blue (4).	Pale rose, blue. 2 :4 variable ? Hazy ς_3^1 mag. star to naked eye Yellow, rose. Binary (6). [((5), Both golden. Binary (7), White, pale lilac.	White, pale rose. 4'2 variable. White, deep red. 40' by 12'. Faint (8). Fine field. Several pairs (9). Both white (10).	Green, ashy green. Golden, ultramarine (11). Golden, blue. Visible to naked eye (12). Yellowish white, deep blue (13).	 Period probably 149 years; mass of system eight times greater than that of the Sun; distance, 1,340,000 times that of the Earth from the Sun. Period 316 years. Renotires low powers; a 64 mag. star in the field, north. Routires low powers; a 64 mag. star in the field, north. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this. Another cluster, triangular-shaped, 2^m preceding and 40^c north of this.
Mag.		5'3, 6'5 4'8, 7'1 7'0, 7'7 6'0, 7'0 5'8, 7'2	2'4, 9'5 - 3'5, 7'3 6'0, 6'4 6'1, 6'8	42,5'8 6'1,8'0 - 8-11 4'0,4'2	41,54 21,61 51,67 65-13 50,81	Period probably 149 years; mass of system ei Sun; distance, 1;340,000 times that of the F Sun; distance, 1;340,000 times that of the fi Requires low powers; a $6\frac{1}{3}$ mags. star ia 8^{1} , another cluster, triangular-shaped, 2^{m} preced A other cluster, triangular-shaped, 2^{m} preced 5^{1} is an excessively close pair, distance 0^{m} '36, 6 5^{1} is an excessively close pair, distance 0^{m} sord- 5° o mag, ruddy violet.
Posit. Angles	• 193	140 327 270 311 149	280 175 83	64 350 	323 63 78 108	ars; ma coo tim a 64 ma ilar-sha s9", se pair, s, formi
Dis- tances	≈ 1 2.6	5.6 58'9 7'1 7'1	62.4 4.9 1.5 32.8	23.8 52.5 8.8	3'0 10'4 3'6 7'7	r 149 yee e, 1,340, s, triangu t 85°: 2' vely clo t masse t masse
31	ћ. п. 5 44 2 27 2 31 2 36 2 54	2 57 3 10 3 12 3 26	3 51 3 53 3 53 3 59 4 6 4 17	4 25 4 44 5 44 5 55 4	5 13 5 14 5 22 5 28 5 28 5 36	 (6) Period probably 149 years 28",5. (7) Sun i distance, 1,340,000 (7) Period 370 years. (8) Requires low powers : a 69 (9) Another cluster, triangular (10) for the great one, and (11) 6'' is an excessively close (12) A 7'S mag. at 262° : 1"° from the 5° mag., ruddy violet.
21	h. н. 5 5 3 6 3 16 3 16 3 34	3 36 3 49 3 52 3 57 4 5	4 30 4 32 4 38 4 45 4 56	5 4 5 10 5 23 5 34 5 43	5 52 5 53 6 2 6 7 6 16	 (6) Period (7) Period (7) Period (8) Requided (9) Anoth (10) A 9 m (11) 6 1 m (12) Two 1 (12) Two 1
4	h. m. 4 25 3 46 3 50 3 50 4 13	4 16 4 29 4 31 4 36 4 45	5 10 5 18 5 24 5 35	5 43 5 49 6 3 6 14 6 22	6 31 6 32 6 41 6 46 6 46	"·9 from
H	h. m. 3 46 4 25 4 29 4 29 4 34 4 52	4 55 5 8 5 10 5 15 5 24	5 49 5 51 5 57 6 4 6 15	6 23 6 28 6 42 6 53 7 2	7 II 7 II 7 20 7 26 7 34	".3, white, ees, milky t one, and at 262° : 1
Decl.	- 9 43 + 67 29 + 60 58 + 9 42	- 19 19 + 55 6 + 59 43 + 57 48 + 8 11	+55 55 +40 35 +57 13 +23 1 +4 18	+ 6 57 + 64 4 + 30 4 + 60 40 + 18 44	+ 2 13 +41 46 29 46 +56 38 +66 53	2: 238°: 4 It telescor f the gread
R.A.	h. m. 23 9'9 23 13'9 23 19'2 23 37'5	23 40'I 23 53'2 23 55'5 0 0'3 0 9'I	0 34'0 0 36'3 0 42'1 0 48'9 0 59'9	I 7.7 I 13.5 I 27.4 I 38°2 I 47°2	I 56'1 2 57 2 57 2 11'2 2 19'7	99°: 8".5. 5°; 6'5. 7': led in gree a6' south o (13) A
Visible	– Nov.–Jan. July–Mar. Aug.–Feb. Dec.–Feb.	Dec.—Jan. Aug.—Feb. Aug.—Feb. Aug.—Feb. Dec.—Feb.	Aug.—Feb. Aug.—Feb. Aug.—Feb. Sept.—Feb. Dec.—Feb.	Dec.—Feb. Aug.—Feb. Oct.—Feb. Nov.—Feb.	Nov.—Feb. Aug.—Feb. Nov.—Feb. July—Mar.	field, 7'0, 8'5 : 2 parallel at 2 ^m 2 ral, very extend r, 30' diameter, ng,
NAME OF OBJECT	Sidercal time at 9 P.M. y. Aquarii	107 Aquarti	a Cassiopeiæ Great Neb. in Androm ⁿ Cassiopeiæ	 	a Piscium	 Moving together through space. The brightest star is red. The brightest star is red. Period about ros years: pair in field, 7°0, 8°5: 290°: 8"'5. Rescime follows nearly on the parallel at 2" 25"; 5°5, 7°2: 238°: 4"'3, white, Rescime follows nearly on the parallel at 2" 25"; 5°5, 7°2: 238°: 4"'3, white, The 'Queen of the Neulals', oval, very extended in great telescopes, milky white. A prime 'Around white nebula, 30" diameter, 26' south of the great one, and white. A round white nebula, 30"

JANUARY (Mean Time of Transit at Greenwich).

2

JANUARY

COLOURS AND REMARKS	White, deep blue. Whitish yellow, ash, Orange (1). Large stars arranged in lines.	Deep yellow, blue. Pake, but distinct. 60" diam. White, yearly (2). Deep yellow, violet. Greenish yellow, ashy blue.	Large stars in curves. Light red, sky blue. Deep greenish yellow, green. Rose, blue (3). White, reddish blue.	Red. Deep yellow, white. Deep yellow, olive. Yellowish white, blue. Yellow, illac (4).	Blue, pearly. Both blue, A-B. See (5). White, blue (6). Yellow, garnet (7) . Goo stars. Magnificent.	very faint ones : the brightest star of the Trapezium, C, 4'9 mag., bright yellow, is 13'''r distant from A (the 7'r mag. given above), on an angle of 31'0. the fourth bright star, D, 6's mag., blue, is 31'', 4 from C, on an angle of 6'. The nebula itself is of a greenish hue, and in large tele- scopes external over several degrees. It contains several variable stars, and probably consists of various glowing gases. simall star near the 6's mag. Common proper motion.
Mag.	5'4, 6°6 3'4, 7'1 2'4 10-12	6'3, 8'4 	9-11 5'0, 8'0 5'3, 6'3 1'1, 10'3 5'1, 7'7	6.4 4'0, 7'2 5'1, 7'5 1'0, 7'8 5'7, 8'3	2'0, 6'6 7'1, 7'9 2'3, 5'8 4'0, 6'5 9-11	very faint ones : the brightest star of th yellow, is $r_3^{n'r}$ distant from A (the 7'r of 310° , the fourth bright star, D, 6'8 an angle of 61°. The nebula itself is of copes extends over serveral degrees. It of probably consists of various glowing gases (3' mag. at 9° : 5'''''') anall star near the 6'5 mag. Common pre-
Posit. Angles	1 1 390	246 289 347 10			359 359 350	brighte nt from right st e nebul everal d vious g urious g
Dis- tances	38 1=	6°2 6°8 7'11 7'8	53.6 53.6 53.6	80'3 14'7 9'5 74'8	52.5 8.8 2.6 93.7	"1 distain fourth the fourth the
31	h. m. 5 44 5 47 5 54 6 13 6 13	6 47 6 51 6 57 7 5 7 7	7 23 7 30 7 39 7 46 8 8	8 24 9 8 24 9 8 25 34	8 42 8 46 8 51 8 56 9 1	very faint ones : the bright yellow, is $r_3''r$ distant from of $3rt^2$; the fourth bright s an angle of $6r_0$. The nebul scopes extends over several lo pobshy consists of various 9 ; 9 ; mag. at 9° ; $5m^2_{r2}$. small star near the 6 ; mag.
21	h. m. 5 5 6 26 6 33 6 33 7 3	7 27 7 31 7 36 7 44 7 46	8 2 8 9 8 19 8 25 8 47 8 47	8 48 8 49 9 3 9 4 9 13	9 22 9 25 9 30 9 35 9 40	very yello of 3 an 2 scop prob (6) A 9.5 i (7) A sinal
1	h, m, 4 25 7 5 7 12 7 31 7 42	8 6 8 10 8 16 8 24 8 24 8 25	8 42 8 48 9 26 9 26	9 27 9 28 9 43 9 44	IO I IO 4 IO 10 IO 14 IO 19	
-	h, m, 3 46 7 45 7 52 8 11. 8 21	8 45 8 49 8 55 9 3 9 4	21 9 28 9 37 9 44 10 6	10 7 10 7 10 22 10 22 10 32	10 40 10 44 10 49 10 54 10 59	the three an that of narvellous
Decl.	° ' + 24 9 + 2 45 + 3 38 + 46 47	+ 0 13 18 58 + 23 45 3 18 + 39 41	+50 57 +27 5 +53 40 +16 17 +37 43	+ 39 29 + 60 16 + 32 33 - 8 20 + 17 17	- 0 23 - 5 28 - 2 0 + 32 31	o: 190"'8, greater th he most n
R.A.	h. m. 2 30'3 2 37'4 2 37'4 3 56'3 3 6'9	3 30'9 3 35'1 3 40'7 3 48'6 3 50'2	4 6.6 4 13°3 4 23°0 4 23°0 4 29°4 4 51°5	4 52'6 4 53'3 5 8'0 5 9'1 5 17'7	5 26'2 5 29'7 5 35'0 5 39'7 5 44'8	en, nag, at 29. ,000 times a, one of t s of four h
Visible		Dec.—Fch. Dec.—Feh. Nov.—Feh. Dec.—Feh. Oct.—Feh.	Aug.—Feb. Oct.—Feb. Aug.—Feb. Oct.—Feb.	Oct.—Mar. July—Mar. Oct.—Mar. Dec.—Feb. Oct.—Feb.	Dec.—Mar. Dec.—Mar. Dec.—Mar. Jan.—Feb. Oct.—Mar.	faint pair betwee and a blue 8'2 ; solar system 400 the great Nebul rapezium consist
						h, with : 180''9, om the idst of The Ti
NAME OF OBJECT	Sidereal time at 9 P.M. 30 Arietis	P. iii. 98 Eridani . Nebula in Eridanus * 7 Tauri . 32 Eridani	Cluster in Perseus .	Red star in Auriga . β Camelopardi . 14 Auriga . β Orionis (<i>Rigel</i>) . 111 Tauri .	 δ Orionis θ' Orion. and Nebula ζ Orionis* γ Leporis Cluster in Auriga 	 A blue 6's mag., 16' north, with faint pair between. A blue 7'6 mag., at 312³: 180''9, and a blue 8'2 mag. at 295⁰: 190''8, the three forming a neat triangle. Distance of Aldebran from the solar system 400,000 times greater than that of the Earth from the Sun. Rectilinear motion. Rectilinear motion. The Trapezium in the midst of the great Nebula, one of the most marvellous objects in the heavens. The Trapezium consists of four bright stars and two

JANUARY

JANUARY (Mean Time of Transit at Greenwich).

4

FEBRUARY

4				State of the second
	COLOURS AND REMARKS	45' by rs' in a 3 inch (r). Yellow, rose (r). Copper red. Brilliant group, surrounding ϕ . Fan-shaped. Contains a red star White, yellow. [(2). Orange, turquoise. Golden, ultramarine (r). White, pale rose. Pair π . p . White, pale rose. Pair π . p . White, sapphire (3). Contain several red stars (r). Reddish, blue. Max. Jan. 5 (4). Visible to naked eye. rs' diam. Round, faint; 9m. starat 130°: 22' Golden, blue (5). White.	White, ashy blue. Orange red, blue. Red, deep blue (6). Fine orange. White, blue (7).	See list of Variable Stars. Forms with three other stars a miniature of Jupiter and his four satellites. Several other stars in the group. Recilimear motion. 241°: 58 ¹⁰ .1.
	Mag.	3'5, 7'3 6'5 7'5'7'3 6'5 7'5'10 5'9, 7'0 5'9, 7'0 5'9, 7'0 5'9, 7'0 5'9, 7'0 5'9, 7'0 5'9, 7'3 5'9, 7'3 6'5'13 8'10, 8'0 6'5'13 6'5, 7'3 6'5'13 6'5'13 7'13 6'5'13 7'13 6'5'13 7'13 6'5'13 7'5'13 7'5'13 6'5'13 7'5'5'15'15'15'15'15'15'15'15'15'15'15'15	6'4, 7'6 6'0, 9'0 6'7, 7'5 6'0 6'5, 7'7	miniature up.
	Posit. Angles		64 87 128 128	s. stars a the gro
	Dis- tances	" " " " " " " " " " " " " " " " " " "	2.6 55.6 	the Star ee other stars in ion.
	28	Ч. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	4 47 5 0 5 3 5 30	 (4) See list of Variable Stars. (5) Forms with three other stars a mi Several other stars in the group. (6) Rectilinear motion. 3, at at¹⁰: 58¹⁰.
	21		5 15 5 27 5 31 5 33 5 33	 (4) See li (5) Forma (5) Rectill (6) Rectill
	11	6. ¹ / ₁ 6. ¹ / ₁ 3.3 3.4 3.5 3.5 3.5 3.6 3.7 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	5 54 6 6 6 10 6 12 6 22	n
	H	ч. 	6 33 6 46 6 49 6 51 7 6	Nebula i gence. Iy. A 9'0 m
	Decl.	• • • • • • • • • • • • • • • • • • •	+58 58 +59 36 +38 1 +65 10 +22 53	he Great
	R.A.	h. m. h. m. 1 250 1 250 1 250 1 250 1 250 1 250 1 430 1 430 2 41 2 41 2 41 2 41 2 41 2 41 2 41 3 938 3 938	3 20'9 3 33'3 3 36'5 3 38'9 3 54'1	eared in t idly fading cluster tak ir motion o
in the set of the	Visible	AugFeb. AugFeb. AugMar. AugMar. AugMar. NovFeb. NovMar. NovMar. NovMar. AugFeb. SepMar. OctMar. SepMar. OctMar. OctMar.	SepMar. SepApr. OctMar. SepApr. NovMar.	as recently app but is now rap from which the common prope
	NAME OF OBJECT	Sidereal time at 9 P.M. Great Neb. in Andromeda Great Neb. in Andromeda Rassiopeia . Cluster in Cassiopeia . Cluster in Cassiopeia . Pair in Cassiopeia . P. i. 179 Aritetis . P. i. 179 Aritetis . Sé Andromedæ . Se Andromedæ . Clusters in Perseus . Cluster in Perseus . O etit (<i>Mira</i>) . Nebula in Cetus * . Pair in Cetus * . Pair in Cetus .	Pair in Camelopardus * . Pair in Camelopardus . Pair in Perseus . Red star in Camelopardus P. iii. 213 Tauri .	(1) See January list. A new star has recently appeared in the Great Nebula in (4) See list of Vi Antomodel, near the nucleus, but is now rapidly fading. (5) Forms with (5) Forms with (5) A 9 mag. star in π . Λ quadrant, from which the cluster takes its divergence. (6) Receiting a near of (3) Moving together through space ; common proper motion o'''s annually. (6) Receiting π at π . β , π at π . β .

FEBRUARY (Mean Time of Transit at Greenwich).

	A STATE OF A				and the second	
COLOURS AND REMARKS	s' diam. Ring of stars round it. Whitish yellow, rosy white. White, reddish blue. White, bluish white.	Rosy white, white. Bright green, bright blue (1). White, orange. Deep red, deep green. White, pale violet (2).	Yellowish white, blue (3). Arranged as an oblique cross. Blue, pearly (3). White, deep blue. Deep yellow, whitish blue (4).	White blue (5). Deep yellow, red. 24' diam. including outliers. Visible to naked eye. White, red.	White, whitish yellow (6). Scattered ; surrounds 12 Mon. Yellow, turquoise (7). Visible to naked eye. Deep yellow, deep blue (8).	A 668 mag., blue, at 85°, 12"8 from A, and a 6'3 mag., reddish, at 61°: 41".6. A triangle precedes this group, the s. f. star of the triangle being 210"8 from σ. from σ. white, nog°: 2"'5, A 7 mag. 250" x. β. Moving, owing to proper notion of A. A faint star, to's mag., at 84°: 87".2.
Mag.		6'0, 6'3 5'3, 6'7 4'8, 5'9 6'8, 7'1 4'5, 10'0	1'0, 7'8 7'5-11 2'0, 6'6 4'2, 6'2 3'5, 5'5	3'9, 9'5 6'5, 7'0 8'11 6'5, 7'0	5'7, 5'7 6-11 5'5, 8'0 8-10 4'0, 7'2	from A, an oup, the s. J c_{1}^{2} , c_{2}^{2} , A_{1}^{2} c_{1}^{2} , A_{2}^{2} , A_{2}^{2}
Posit. Angles	315 315 25 212	316 305 305 221 336	201 	235 166 	132 22 352	this group te, rogo te, rogo at 84°:
Dis- tances	5:59 19'2	9.0 39°2 18°081 8°081 8°081	9.5 52.5 52.5 52.6 52.6	1111 94°2 - 73°3	7.4 93.6	, at 85° recedes ag., whi to prope
28	h. m. 7 34 5 28 5 36 6 2	6 4 6 19 6 22 6 28 6 33	6 35 6 48 6 53 6 55 6 55	6 59 7 7 7 28 7 28 7 39	7 49 7 52 8 4 8 8 8 23	A 66 ⁸ mag., blue, at 85°, 12 ^{4/8} from ^A A triangle precedes this group, th from σ. from σ. vhite, 13° ² , 2 ⁴ ′5. Moving, owing to proper motion of Å. A faint star, to'5 mag., at 84° : 87 ^{1/2} .
21	h. п. 5 55 6 3 6 9 6 29	6 32 6 46 6 50 6 56 7 I	7 3 7 15 7 20 7 23 7 23	7 26 7 34 7 38 7 38 8 6 8 6	8 17 8 20 8 32 8 35 8 35 8 35	 (5) A 6.8 I to the from from from (6) B doul (7) Movin (8) A fain
	h. m. 6 27 6 35 6 42 6 49 7 8	7 11 7 25 7 29 7 35 7 40	7 42 7 55 7 59 8 2 8 2	8 14 8 14 8 18 8 35 8 35 8 46	8 56 8 59 9 11 9 15 9 30	
н	h. m. 4 48 7 14 7 22 7 28 7 28 7 48	7 50 8 5 8 8 8 8 8 15 8 15 8 19	8 21 8 34 8 38 8 38 8 41 8 42	8 45 8 53 8 57 9 14 9 25	9 35 9 38 9 50 9 54 10 9	o tble, o'''-z. thove the from the
Decl.	° ' + 49 I2 + 5 34 + 25 21 + 22 44	- 9 0 +14 23 +58 52 +37 9 -12 0	- 8 20 +35 48 - 0 23 - 5 28 - 5 28	- 2 40 +24 35 +32 31 +24 22 +13 29	- 6 57 + 4 57 + 43 41 -20 38 + 20 44	: 54".7. ingle of 274 ly close dot in a line, a in 2 distant
R.A.	h. m. 4 1.5 4 9.4 4 15.6 4 35.4	4 38'1 4 52'5 4 56'3 5 2'6 5 7'0	5 91 5 26'2 5 26'2 5 28'8 5 29'7	5 33°0 5 40°9 5 44°8 6 1°8 6 12°9	6 23'3 6 26'2 6 38'5 6 42'1 6 57'4	ole, at 88° ng on an a i excessive ree stars i ag. is 135 n of 134°.
Visible		Dec.—Mar. Nov.—Mar. Oct.—Apr. Nov.—Mar. Dec.—Mar.	Dec.—Mar. Nov.—Mar. Dec.—Mar. Dec.—Mar. Dec.—Mar.	Dec.—Mar Nov.—Mar. Nov.—Mar. Nov.—Mar. Dec.—Mar.	Dec.—Apr. Dec.—Apr. Nov.—Apr. Dec.—Mar. Dec.—Apr.	A 9'0 mag., purp seconds precedi on of Rigel is an hese are the th ula. The 3'5 n in the direction
NAME OF OBJECT	Sidereal time at 9 P.M. Cluster in Perseus Pair in Taurus	55 Bridani	 β Orionis (Rigel). Cluster in Auriga δ Orionis λ Orionis β^a Orionis and Nebula 	 σ Orionis * P. v. 214 Tauri Cluster in Auriga Cluster in Gemini Pair in Orion 	11 Monocerotis Cluster in Monoceros 56 Auriges	 (i) Also called 26 (Bode) Orionis. A 9'0 mag., purple, at 80° i 54"7. (a) A very red 6 mag. (variable) 57 seconds preceding on an angle of 274°. (b) See Jan. list: 7'8 mag. companion of Rigel is an excessively close double, o'''a. (c) A -C 90°: 128"8 : 7'0 mag. These are the three stars in a line, above the firsh south in the Great Nebula. The 3'5 mag. is 725" distant from the brightest star of the Trapezium in the direction of 134°.

FEBRUARY (Mean Time of Transit at Greenwich).

FEBRUARY

6

MARCH

_						
COLOURS AND REMARKS	Radiated. 10' diam. (1). White. Fine field. White, blue. Fine field. White, ashy yellow.	White, reddish yellow. White, deep green. White, yellow. Yellow, blue. Deep yellow, blue (2).	White, deep blue. White, green (3). Faint, 5g' by 3g' (4). 20' diam: ; star-shaped. Yellow, blue (5).	Double nebula, 7' diam. (6). Topaz, blue (7). White, ashy (8). Golden, lilac (9). White, greenish white.	Fine red (ro). Pale red, grey. White, deep rose (11). White. 30' diam. Brilliant mass (12).	Has been thought variable. Moving together through space. In a fine scattered group. Struve calls it coloris gregie rubicundi, pæne rosei ;' several pairs near, Probably binary, and common proper motion. Contains a red star, 8'5 mag, in the southern portion.
Mag.	6'3, 7'5 6'0, 8'0 4'6, 5'7	4°0, 7°5 6°0, 7°0 6°3, 7°7 7°0, 8°2 4°8, 8°5	5'1, 6'6 5'5, 6'4 8'0-11 3'7, 7'7	1.0, 8'9 5.8, 6'7 4'2, 6'2 6'1, 7'0	6'0 6'0, 7'5 5'4, 7'8 6'5, 6'7 8'0, 12'0	e. rubicundi, proper mot
Posit. Angles	61 290 173	299 260 49 221 65	28 199 142	152 354 27 210	261 152 156	tble. gh spac p. egregie ommon mag. ii
Dis- tances	19.6 19.6 340.4	69.2 21.0 14.1 5.3 6.8	32'I 4'7 	- 174.7 7.9 13.7 19.9	17.5 6.3 3.2	ght vari er throu red grou coloris y, and c star, 8*5
31	h. m. 9 37 3 37 3 41 3 41 3 43	3 54 4 19 4 20 4 26 4 31	4 41 4 46 4 52 4 53 4 53 4 54	5 13 5 13 5 27 5 27 5 27 5 27	5 53 5 55 6 12 6 20 6 21	 (7) Has been thought variable. (8) Moving together through space. (9) In a fine scattered group. (10) Furuve calls it 'coloris geregie n (11) Probably binary, and common p (12) Contains a red star, 8'5 mag, in
21	h. m. 8 57 4 16 4 20 4 21 4 21	4 33 4 58 5 0 5 11	5 20 5 26 5 31 5 32 5 33	5 44 5 52 6 6 6 21 6 29	6 32 6 35 6 51 7 0 7 0	(7) Has (8) Movi (9) In a 1 (10) Struv (11) Probe (12) Conta
#	h. m. 8 18 4 55 5 0 5 0 5 2	5 12 5 37 5 39 5 44 5 50	6 0 6 5 6 10 6 11 6 13	6 24 6 32 6 46 7 0 7 8	7 11 7 14 7 31 7 39 7 40	
-	h. п. 7 38 5 35 5 39 5 39 5 39 5 41	5 52 6 17 6 18 6 24 6 24	6 39 6 44 6 50 6 51 6 51	7 3 7 11 7 25 7 40 7 48	7 51 7 53 8 10 8 18 8 18 8 19	ed, white.
Decl.	° ' +49 58 +34 3 +24 2 +22 0	+ 9 56 + 3 27 + 1 27 + 69 42 + 2 44	+ 3 26 +25 3 +21 56 +34 4 - 6 0	0 0 + 7 23 +48 44 + 4 39 +17 52	+38 32 -18 34 +13 19 +52 56 - 8 11	: 74"·6; r
R.A.	h. m. – – – – – – – – – – – – – – – – – – –	4 29.4 4 54.6 4 56.1 5 1.7 5 7.3	5 22'2 5 22'2 5 27'6 5 28'7 5 29'8	5 40'9 5 49'0 6 3'0 6 17'7 6 25'6	6 28.7 6 31.4 6 48.2 6 56.6 6 57.3	7'0; 327 ⁰ Ivable. Id.
Visible	Oct.—Mar. Nov.—Mar. Nov.—Mar. Nov.—Mar.	Nov.—Mar. Dec —Mar. Dec.—Mar. Oct.—Apr. Dec.—Mar.	Dec.—Mar. Nov.—Mar. Nov.—Mar. Nov.—Mar. Dec.—Mar.	Dec.—Mar. Dec.—Mar. Nov.—Apr. Dec.—Mar. Dec.—Apr.	Dec.—Apr. Dec.—Mar. Dec.—Mar. Dec.—Apr. Dec.—Mar.	Contains pair 6'5, 7'o : 327° : 74"'6 ; red, white. ' nebula, non-resolvable. reddish. Fine field. sing faint pair.
NAME OF OBJECT	Sidereal time at 9 P.M. Cluster in Perseus Pair in Perseus 62 Tauri	88 Tauri Pair in Orion	23 Orionis	Nebulæ in Orion *	Red star in Auriga	 (1) Like a badge of knighthood. Contains pair 6'5, 7'0; 3 (3) A coarse pair in field, s. p. (3) Common proper motion. (4) Messier 1, the so-called ' Crab ' nebula, non-resolvable. (5) An 8'2 mag. at 102°8; 49''3, reddish. Fine field. (6) Wispy, with two nuclei, enclosing faint pair.

MARCH (Mean Time of Transit at Greenwich).

MARCH (Mean Time of Transit at Greenwich).

)		States and		and and the second
COLOURS AND REMARKS	Large scattered cluster (1). Yellow, turquoise. Orange, reddish purple (2). Grnish. yellow, grnish. yellow (2).	Faint. rz' diam. Vellowish white, blue (4). Visible to naked eye. 30' diam. Both white. zo' by rz' (5).	White, yellow. Ternary (6). Orange, hlue. Both white. Red, green. Deep yellow, white (γ) .	Contains about 50 large stars. Deep yellow, ashy blue. Binary. Pale red. White, ashy blue. White, bluish.	Pale red, pale green. A var. Orange, deep blue. Reddish white, blue (8). Reddish, pale blue. Milky white. 3' by r'.	 star, 7'0 mag, 655" distant in the direction of 99°, is a close pair; 7'0, 7'3: t.4t°: 1"3; very white. (5) A bright orange 5'2 mag, 3.√, (6) 5'8 mag, is a close pair, hwing a 6'6 magnitude star at 58°; 1'"o (1886'0). (6) 5'8 mag, is a close pair, hwing a 6'6 magnitude star at common centre of gravity, but in an anomulous orbit. (7) A 73 mag, at 88°: 99"8, white. (8) 3'8 mag, is moving.
Mag.	6-10 6-10 3'5, 8'9 5'5, 9'5 3'0, 4'0	10'0-12'0 1'0, 8'5 9'5 5'9, 6'7 5-10	5'8, 6'5 6'0, 8'0 6'0, 6'3 6'0, 8'5 6'3, 7'0	6'5-9 3'8, 7'4 6'5 4'2, 6'3 7'2, 8'2	2, 9'0 5'0, 9'5 3'8, 9'3 6'5, 8'5	star, 7'0 mag, 65% distant in the di $\gamma'3: x_4x^0: x''3; very white.$ $\gamma'3: corange 2, a mag, x, f, ag, is a close pair, having a 6'6 ma ag is a close pair, having a 6'6 ma The period of this pair is 0'1 years. C ag gravity, but in an anomulous orbit. a mag, at 80°: 99''8, white.$
Posit. Angles	205 232 232	339 80	127 168 214 86 61	228 	153 75 41 -	distau ry whi favin havin air is (n anon n anon
Dis- tances	; 7'I 5'8 5'8	350 16-8	5.4 765 4.8 419 92.8	3.3 2.6 5.6	281.3 37°0 80°9 53°0	ag, 655" i 1"; s; ve 5 2 mag lose pair lof this f but in al but in al s ⁰ : 99"'e
31	h. m. 9 37 6 33 6 37 6 45 6 51	6 55 6 57 7 0 7 4 7 29	7 29 7 41 7 44 7 44 7 57	7 57 8 4 8 27 8 35 8 35 8 41	8 45 8 49 8 58 9 11 9 23	ar, 7°0 m 3 : 141° ht orange f. is an ac he period f gravity, g. is mov
21	h. m. 8 57 7 12 7 16 7 24 7 30	7 35 7 36 7 40 8 8	8 23 8 23 36 36 36 36 36 36 36 36 36 36 36 36 36	8 36 8 44 9 7 9 14 9 20	9 25 9 29 9 38 9 38 10 2	star, γ 'o mag, 655" distant γ '3 : ι_{4} 's' : ι_{1} '3 ; very white (5) A bright coarge s'2 a mag, ι_{7} , J'' (6) 5'8 might coarge s'2 a mag, ι_{7} , J'' (6) 5'8 might is a close pair, having The period of this pair is of Gravity, but in an anomu (7) A τ '3 mag, at 88° : 99"8, white (8) 3'8 mag, is moving.
	h. п. 8 18 7 52 7 56 8 3 8 3 8 10	8 14 8 16 8 19 8 23 8 23 8 48	8 48 8 59 9 2 9 2 9 16	9 16 9 23 9 46 9 54 10 0	10 4 10 8 10 17 10 30 10 41	
н	h. m. 7 38 8 31 8 35 8 43 8 43 8 49	8 53 8 55 8 58 9 58 9 27 9 27	9 27 9 39 9 41 9 42 9 55	9 55 10 2 10 25 10 33 10 39	IO 43 IO 47 IO 56 II 9 II 21	o: 277° at 164° at 223° imes that
Decl.	°'' 	+21 51 + 5 31 -14 33 -14 24 -12 20	+18 0 +42 22 +27 19 -23 40 +19 57	+20 20 + 6 50 +31 26 +37 17 +54 30	- 8 10 + 10 13 + 10 24 + 5 29 - 7 10	pair 7'5, 9 , 9'0, blue, 9'5 mag., thousand t
R.A.	h. m. 7 9'1 7 13'3 7 20'9 7 27'3	7 31.6 7 33'3 7 56'6 7 40'2 8 5'3	8 5.6 8 17°0 8 20°1 8 33°3	8 33.6 8 40.7 9 3.8 9 11.7 9 17.6	9 22'0 9 25'8 9 35'I 9 48'I 9 59'5	north is a A 3rd star and a 4th, a very cl
Visible	– Dec.—Apr. Dec.—Apr. Dec.—Apr. Dec.—Apr.	Dec.—Apr. Dec.—Apr. Jan.—Apr. Jan.—Apr. Jan.—Apr.	Jan.—Apr. Jan.—May Jan.—Apr. Jan.—Apr. Jan.—Apr.	Jan.—Apr. Jan.—Apr. Jan.—May Jan.—May Dec.—May	Jan.—May Jan.—May Jan.—May Jan.—May Jan.—May	a curve; 42' 1 1,000 years. 1 dary system; 2 1 six hundred a 1 lie 8'5 mag. i
NAME OF OBJECT	Sidereal time at 9 P.M. Cluster in Monoceros 8 Geminorum	Cluster in Gemini*	 ζ Cancri Pair in Lynx φ² Cancri γ2, γ4 P. viii. Argús P. viii. 124-6 Cancri 	Cluster in Cancer (Pressee) • Hydræ* Red star in Cancer 38 Lyncis	a Hydræ	 A sapphire 6 mag. in the field. Two other comparions forming a curve; 4² north is a pair 7.5, 9'o: 277⁰: 3) Binaty, probably blue. Binaty, proto very long, over 1,000 years. A grd star, 9'o, blue, at 164⁰: 73^{1/3}, 3 probably forms a ternary system : and a 4th, 9'5 mag, at 232⁰: 1, Distance of Procycno ne million six hundred and eighty thousand times that of the Earth from the Sun. The 8'5 mag, is a word close double. Another

MARCH

8

APRIL (Mean Time of Transit at Greenwich).

Both grnish. yellow. Binary (3). About 200 stars, 20' diam. (6). (4) Contains several pairs. (5. A.7 on age, blue, at 342°: 53/"4; and an 8°0 mag., also blue, at 44°: 82"'5. (6) Visible in the finder, shaped like a Phrygian cap. COLOURS AND REMARKS Visible to naked eye (4). Deep yellow, deep blue. Whitish blue, blue (2). Deep yellow, blue (5). Yellow, whitish blue. Golden, deep blue. Deep yellow, blue. Orange, turquoise. White, ashy olive. Both topaz yellow. Yellow, turquoise, White, deep blue. Both white (1). White, olive. White, blue. White, blue. Both white. Both white. Both white. Red, blue. 20' diam. 20' diam. 6.7, 8.2 5.7, 6.4 7'0, 8'2 6'2, 8.4 5'2, 8'2 5'2, 6'2 2.2 '6.9 3.0, 4.0 0.9 '0.9 2.0' 2.0 5.6 .2.9 5.2, 7.5 4'2, 6'3 I.L '8.9 6.3, 8.2 5.2 . 7.2 1.2 .2.9 L.L '0.9 2.2 . 2.9 5.o1-6 5.1. 7.9 S-10.5 5.6-5.5 5.0I-8 Mag. Posit. Angles 253 180 318 300 **I**88 126 131 339 56 314 232 353 211 307 358 17 161 55 0 1 Ì 4 1 tances Dis-0.18 20.0 78.3 4.5 28.2 5.0 6.52 147 0.51 9.II 0.6 3.3 3.3 37.5 30.4 4.2 L. I 5.8 0,01 = 1 1 3 28 6 IO 6 15 h. m. 11 35 39 4 39 s o S 8 4 % 4 S 0 (1 18 55 53 8 34 30 17 24 59 ų. 4 4 4 5 20 S 5 9 9 9 4 4 4 4 4 S S 5 15 h. m. 10 59 29.33 15 35 0 6 61 46 4 38 38 23 27 38 31 33 33 33 39 41 41 5 21 4 ų. 4 4 4 4 20 10 S S 5 S 20 9 9 9 9 9 9 9 9 9 9 6 15 6 10 6 12 7 I8 7 20 7 25 7 13 IO 20 5 17 35 ∞ 6 39 6 48 20 'n. 43 17 32 32 54 54 23 59 14 30 1 9 9 ų. 4 ŝ 20 00 9 2 ~ S 5 S S 9 5 22 23 ġ. 41 56 56 II 12 14 33 33 46 47 49 SI 54 0 18 28 38 23 20 20 59 4 6 el. ų 6 9 9 (t) Binary ; period perhaps 650 years. A 7'4 mag. at 307° : 8''7, bluish red. (2) A blue 6'5 mag. at 358° : 215''2. (3) Distance 1,050,000 times that of the Earth from the Sun (see March list). ŝ 9 9 9 9 9 9 9 9 5 ~ ~ 5 2 5 2 S ŝ 5 2 8 8 +40 45 -13 54 15 32 +55 30 + 50 22 -23 14 -14 I4 33 - 5 27 +20 32 - 6 24 - 649 8 œ 55 +27 52 +20.5 - 2 II +29 II 32 +24 27 +5933+12 14 -Decl. 1 -13 + 23 + 32 6 -+ 37 -26 II-0 33.8 8 32.3 6 2'3 6 36'2 6.96.9 6.05 27'3 31'3 7 34'2 9.66 8 8 39.7 8 44'9 8 49'9 6 54'3 6.52 2 7 42.6 6.4 8 0.88 8 7 13°5 7 I3.5 7 29.5 7 58.7 8 I8'2 2.15 R.A. 'n. I Ч. 9 9 ~ 00 Dec.-May Dec.-May Dec.-May Dec.-May Dec.-May Dec.-May Dec.-Mar. Dec.-Apr. Dec.-May Dec.-Mar. Dec.-Apr. Dec.-May Dec.-May Dec.-May Dec.-May Dec.-Apr. Dec.-May Dec.-May Dec.-Apr. Dec.-Apr. Dec.-Apr. Dec.-Apr. Dec.-May Dec.-May Visible ł • Cluster in Monoceros Cluster in Canis Maj. Sidereal time at 9 P.M. a Geminorum (Castor) NAME OF OBJECT Pair in Monoceros Cluster in Argo. Cluster in Cancer Pair in Auriga. • Pair in Cancer . Pair in Cancer . • Pair in Auriga. Pair in Gemini . • Pair in Gemini. µ Canis Majoris. 31 Monocerotis . P. viii. 160 Hydræ viii. 129 Cancri 12 Lyncis* . · Cancri . . • 19 Lyncis 20 Lyncis Hydræ Argûs Argûs Argûs 12 k1 ່ à 5

APRIL

APRIL (Mean Time of Transit at Greenwich).

-		1				
COLOURS AND REMARKS	Yellow, reddish blue. Binary. White, ashy. 4' by 2'. White (1). White, blue.	Deep yellow, bluish white. White, lilac (2). Both yellowish white (3). 9' by 2\$'. Nucleus = 8 m. star (4). White, blue.	White, yellow (5). Golden, greenish gold (6). Yellow, blue. Pearly white, ashy green. 8.5-9.5. Intense blood col. (7).	Yellow, violet. 3' by r', wht. An 8 mg. star <i>s. f.</i> Planet-like, pale, <i>a'</i> diam. White or yellow (8). Yellow, ashy olive.	Golden, bright blue. White, violet. Yellow, violet (9). White, bluish (ro). White, ashy.	 (6) Binary, period 407 years. The finest pair in the northern sky. (7) In the field with a Crateris, 42 seconds of time following it. A blue star lies 60⁶/ first calculated one in \$60° and another s. f. (8) The areliest calculated binary, period 60 years and nine months. (9) Common proper motion. (10) An 8'5 mag., reddish, at 235°: 64"'5.
Mag.	5.1, 8.7 5.4, 7.1 6.8, 8°2	5.7, 7.5 5.5, 8'5 6'2, 7'2 6'0, 7'0	3'4, 6'0 2'2, 3'4 6'0, 7'0 4'8, 6'7 Var.	I'9, 8'0 	5.0, 6.7 5.5, 8°3 5.5, 5°8 6'5, 7°5 5'8, 7°5	ary, period 407 years. The finest pair in the 1 the field with a Crateris, 42 seconds of time fol 60 ⁶ from the scarlet one in 269 [°] , and another s. earliest calculated binary, period 60 years an mmon proper motion. ^{8°} 5 mag., reddish, at 235 [°] : 64 ^{0°} 5.
Posit. Angles	233 201 320	162 3 147 - 167	342 115 240 105	204 242 63	173 4 29 212 240	rs. Th tteris, 42 one in binary, at 235°
Dis- tances	= 2.4 7.2 6.0	82.5 64.9 24.7 	318.7 3.3 6.6 6.3	384'9 - 1'7 2'8	92.7 5.5 9.0 3.2 3.2	407 yea th a Cra e scarlet lculated er motion eddish,
30	h. m. II 35 6 26 6 26 6 40 6 40	6 47 6 49 6 54 7 11 7 34	7 36 7 39 8 3 8 15 8 20	8 22 8 25 8 33 8 37 8 43	8 47 8 48 8 52 8 54 9 23	Binary, period 407 years. In the field with a Crateri of from the scatter one The earliest calculated bin Common proper motion. An 8'5 mag., reddish, at 2;
21	h. m. Io 59 7 I 7 2 7 15 7 15 7 15	7 22 7 24 7 29 7 47 8 9	8 II 8 14 8 38 8 50 8 50 8 50	8 57 9 I 9 9 9 13 9 18	9 23 9 23 9 27 9 29 9 59	(6) Binal (7) In th 66 (8) The 66 (9) Com (10) An 8
#	h. m. 10 20 7 41 7 41 7 54 7 55	8 I 8 4 8 8 8 26 8 26 8 49	8 50 8 54 9 17 9 29 9 35	9 37 9 40 9 52 9 58 9 58	IO 2 IO 3 IO 6 IO 9 IO 38	
	h. n. 9 +1 8 20 8 34 8 34 8 34	8 41 8 43 8 48 9 5 9 28	9 30 9 33 9 57 10 9 10 14	10 16 10 19 10 27 10 31 10 37	IO 41 IO 42 IO 46 IO 48 II 17	Iuminis
Decl.	0 / +67 36 +23 26 +51 29 +50 2	+46 7 - 2 16 +40 28 +69 37 +71 38	+23 59 +20 25 + 5 21 +25 21 -17 42	+62 21 + 0 35 +55 38 +32 10 +11 9	+ 3 29 + 39 58 - 28 38 + 17 25 + 22 6	dens stria
R.A.	h. m. 9 0'4 9 14'1 9 14'8	9 21.2 9 23.4 9 28.2 9 26°0 10 8°7	IO IO'3 IO I3'7 IO 37'4 IO 49'4 IO 55'0	56.7 59.9 12.1 12.1 12.1	II 22'I II 22'9 II 26'6 II 28'8 II 58'4	south. d; 'splen
Visible	– Dec.–June Dec.–May Dec.–June Dec.–June	DecJune FebApr. FebJune DecJune	Feb.—June Feb.—June Mar.—June Mar.—June Mar.—June	Dec.—June 10 Mar.—June 10 Feb.—June 11 Feb.—June 11 Mar.—June 11	MarJune MarJune AprJune MarJune MarJune	g., w. f. it. A 7 mag. south. pace. 6''long by 50'' broad ; ' splendens stria luminis.'
NAME OF OBJECT	Sidereal time at 9 P.M. σ^a Urseo Maj. *	4t Lyncis r' Hydres Pair in Leo Minor . Nebula in Ursa Maj.	 \$ Leonis Y Leonis 35 Sextantis 54 Leonis Scarlet star in Grater* 	a Ursee Maj. Nebula in Leo Nebula in Ursa Maj. ¢ Ursee Maj.*	r Leonis	 (r) In field with 37 Ursæ, 6 mag., m. f. it. (a) Moving together through space. (a) A 75 mag. in 320^o: 118^W2^o. (b) Another mebula 40^o south, 6^v long by Two pairs in field. (s) A 3rd star at 306^o: 240^o.

APRIL

UNIVERSITY

MAY

	10		
	COLOURS AND REMARKS	Deep yellow, blue. Creenish white, olive. White, reddish ash. Yellow, ashy yellow. zo' diam. ; see April list, zo' diam. ; see April list, Both white. White. bronze. Both white. White. bronze. Both white. White, deep blue. Yellow, blue (2). Bluish white, violet. Deep yellow, deep blue. White, yellow. Bluish white, violet. Deep yellow, deep blue. White, yellow. White, pellow. Bluish white, olive (3). White, turquoise. Zoldam. White (6). Fine red (7). Yellow, blue.	 (5) About 30" diam. (6) 76 is double, with a companion of the same magnitude and colour at 18° :6"6. (6) 76 is double, with a companion of the same straight line. 22' exactly south of this triple is P. x. 159; 7'5, 8'5:11°: 30"7. (7) Has a blue 9'S mag. in 90°: 30".
	Mag.	57,90 662,71 57,70 9-105 70,73 60,83 65,70 65,80 66,75 11,87 11,87 80 66,73 65,80 66,73 65,80 66,73 65,80 66,73 65,80 66,73 65,80 65,81 65,75 75 65,75 75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 65,75 75 65,75 75 75 75 75 75 75 75 75 75 75 75 75 7	 (5) About 30" diam. (6) 76 is double, with a companion of the same transfer All three stars are nearly in the same stransfer the stars are nearly in the same stransfer (7) Has a blue 9'5 mag. in 90° : 30".
	Posit. Angles	86 86 86 86 86 86 86 86 80 80 80 80 80 80 80 80 80 80 80 80 80	panion rly in tl 5, 8'5 : r 5° : 30".
nwich	Dis- tances	134'2 134'2 134'2 134'2 134'2 23'8 22'2 22'2 23'3 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 23'5 24'5 25'5	th a com s are nea 159 : 7'5 lag. in 90
ut Gree	31	не не не не не не не не не не	30'' diam. ouble, wii three star le is P. x. blue 9'5 m
ansit a	21	H H	5) About 6) 7.6 is d All trip 7) Has a
of Tr	#	н. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Time	н	H H 5 5 5 5 5 3	nother, 8
(Mean	Decl.	$^{\circ}$, + + 7 1 + 7 2 + 7 2 + 3 5 + 3 3 5 + 4 5 + 4 5 + 4 5 + 7 2 + 2 2 2 + 2 2 2 + 2 2 2 2	motion ; a
MAY (Mean Time of Transit at Greenwich).	R.A.	h m. 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	ge proper
	Visible		%". 91° : 239" has laı
	NAME OF OBJECT	Sidereal time at 9 P.M. Pair in Camelopardus P. Vili. ro8 Hydree Cancri Cluster in Cancer Nebula in Leo Minor Pair in Hydra Pair in Ursa Maj. Pair in Ursa Maj. Pair in Lynx Pair in Lynx Pair in Lon Minor Pair in Lon Minor Pair in Lon Minor Pair in Loo Pair Pair in Loo Pair Pair in Loo Pair Pair in Hydra Pair in Hydra Pair in Hydra Pair in Hydra Pair in Ursa Maj.	 (1) 87 has a minute companion at 18". (2) 7 mag. star in field, m. (3) Moving progrepher through space. (4) See April list: a 7 mag. star at 201°: 239" has large proper motion; another, 84 mag., at 302°: 327"6.

MAY (Mean Time of Transit at Greenwich).

COLOURS AND REMARKS	Both white (r). Pale yellow, violet. White, lilac. White, deep blue.	Yellowish white, ash (2). Yellow, white (3). 90° diam. Both white. Yellow, olive (4).	Deep yellow, blue. Var.? Very full red. White, purple. Spindle-shaped ; 7' by 2' (5). Yellowish white (6).	Both yellow. Binary (7). Pale yellow, dusky yellow. Both yellowish white (8). Greenish white, emerald (9). Deep yellow, yellow.	Both yellow. Yellow, bluish olive. 6' diam. Compressed mass of Blood red (ro). [stars. Yellow, light purple.	 (6) A small star in 228°: 57".9. (7) Alternately variable. The period of revolution is about r80 years. (8) An 8°0 mag., blue, at 232°: 120"9. (9) Alternate ar and a double star to the naked eye with Mizar. It is 797" a dicor, 45 mag. forms a double star to the naked eye with Mizar. It is 797" at 101°: 510".4.
Mag.	7'0, 7'5 5'0, 8'5 6'0, 8'0 5'8, 7'3	6'0, 8'0 4'7, 8'4 7'0, 7'2 6'6, 9'2	5'7, 8'2 7 3'0, 8'5 6'1, 6'2	3'0, 3'0 3'2, 6'0 5'5, 6'3 2'2, 4'0 5'5, 6'5	7'0, 7'3 6'4, 8'7 10-12 6'2 4'0, 8'5	l of revoluti tar to the ne 7'5 mag.,
Posit. Angles	97 150	264 355 - 151 92	259 305	156 228 297 148 192	290 32 290	9. e period o': 120"'5 f 72°; a
Dis- tances	""""""""""""""""""""""""""""""""""""""	10'4 74'1 33'6 11'0	24'3 5'6	5°2 20°0 179°0 14°3 10°2	2.6 15'9 15'9 79'6	18°: 57" ble. Th t, at 232 orms a c angle o
31	h. m. 13 37 6 31 6 34 6 34 6 34 6 34	6 56 7 5 7 10 7 17 7 27	7 34 7 43 7 47 7 47 7 49 7 58	7 59 8 14 8 32 8 42 8 53	8 55 8 55 9 0 9 5 9 19	mall star in z_2 ernately varial ernately varial for, 4'5 mag., but distant on an rot ^o : z_1o'' , g^o : $78''o$.
21	h. m. 12 58 7 11 7 14 7 14 7 24	7 35 7 45 7 50 8 6	8 13 8 22 8 26 8 26 8 29 8 38	8 38 8 53 9 12 9 22 9 33	9 34 9 34 9 39 9 45 9 58	A small Alterna An 8'0 Alcor, 4 dist rol ⁰ in rog ⁰ :
1	h. m. 12 18 7 50 7 53 8 3	8 14 8 24 8 29 8 36 8 35	8 52 9 6 9 8 9 17	9 18 9 32 9 51 10 1 10 12	IO I3 IO I3 IO I8 IO 24 IO 24 IO 37	arallax, distance (6) A small star (7) Alternately v (8) An 8°0 mag., (9) Altor, 45 ma (9) Altor, 45 ma (9) Altor, 45 ma (9) Altor, 5 ma (10) Has a blue companion in rog ⁰ : 78"0.
H	h. m. II 39 8 29 8 32 8 32 8 32 8 32	8 54 9 33 9 15 9 25	9 31 9 40 9 45 9 47 9 56	9 57 10 12 10 30 10 40 10 51	IO 52 IO 53 IO 58 II 3 II 17	distance a blue co
Decl.	- 0 / + 74 5 - 3 2 - 6 31 + 3 38	+45 44 +20 51 +37 37 +71 17 -11 13	+41 18 + 1 25 -15 53 +15 3 -12 23	- 0 49 +38 56 +67 55 +55 31 -25 55	- 7 18 + 2 58 + 28 57 - 27 48 + 26	sensible parallax, distance (10) Has a blue c
R.A.	h. m. 11 7'9 11 10'9 11 11'2 11 21'0			35.9 50.7 30.5 30.5	31.6 31.9 36.9 42.6 55.8	
Visible	h. m. MarJune MarJune MarJune II 112 MarJune II 210	Jan.—July II 32'6 Mar.—June II 42'1 Mar.—June II 47'0 — II 54'0 Mar.—June I2 3'6	April—July 12 10'4 April—June 12 19'4 April—June 12 24'0 April—June 12 26'2 April—June 12 35'3	April-June April-July MarSep. MarJuly May-June	April—June 13 31 6 April—June 13 31 9 April—July 13 36 9 May—June 13 42 6 April—June 13 55 8	per motion and th from the sun. '5: z5 ⁰ : 76 ¹¹ .8, moving.
NAME OF OBJECT	Sidereal time at 9 P.M. Pair in Ursa Maj.	Pair in Ursa Maj	2 Canum Venat. Red star in Virgo 8 Corvi	 Y Urginis a Canum Venat. (Cor. Caroli) Pair in Draco § Urse Maj. (Miar) f Hydres 	81 Virginis	(1) The 7'0 mag. has a rapid proper motion and $1,095,000$ times that of the earth from the sum. (2) A yoo mag. as $93 \cdot 36' \cdot 37'$, $35 \cdot 32^{\circ} \cdot 76''$. (3) A similar pair in field $x \cdot 7 \cdot 70, 35 \cdot 32^{\circ} \cdot 76''$. (4) Alm 3° amag. blue, at $93^{\circ} \cdot 14''$, moving. (5) In the nebulous region of Virgo.

MAY

II

-	
ner.	
G	
0	
2	
2	
S	
e	
~	
Ch	
-	
at	
t	
8	
-	
t	
5	
Transit	
2	
8	
he	
5.	
14	
×	
0,	
0	
33	
2.	
En.	
Time	
~	
~	
Mean	
0	
9	
·	
1-1	
ш	
-	
Z	
-	
JUNE (Mea	
1	
-	

12		JUNE		
COLOURS AND REMARKS	Rather faint, elongated in 79°. White, blue. White, blue. Yellow, deep reddish blue (r). White, deep blue. White, blue (2).	Both white. Rosy, dusky red (3). Yellow, lilac (4). Yellow, blue. Golden, deep blue. Both yellow. Binary (5). White, yellow (6). 2½ diam. Like a comet.	Orange, white. White, reddish blue. White, violet (7). Yellowish white. Globular cluster. Greenish white, emerald (8). Both white. Double nebula (spiral). Faint. Yellowish white, blue. White, deep blue.	See May list. Colours variable, as well as the magnitudes. Rectilinear motion. A roo mag., greyish blue, in 297°: 70‴9. See May list.
Mag.		6'0, 6'6 6'0, 8'9 5'0, 8'0 6'8, 7'4 4'7, 6'0 3'0, 3'0 6'4, 7'1	5.7, 6.3 6.0, 7'9 5.6, 6'2 5.6, 6'2 10-12 6'4, 6'9 6'4, 6'9 5'3, 8'2 7'0, 8'1	burs variab h blue, in 2
Posit. Angles	345 345 322 304 38	197 336 168 168 271 156 271 156	49 286 343 343 297 147 147 147 237 243	t. Colo motion. , greyis t.
Dis- tances	# [] = [] = [] = [] = [] = [] = [] = []	20'1 10'7 66'1 56'1 5'2 32'1	195'1 3'4 7'1 288'0 - - 69'0 - - 4'5 71'3	See May list. Cold Rectilinear motion. A 10'0 mag., greyis See May list.
30	 h. m. 15 35 4 30 4 50 4 50 4 51 4 51 5 14 	537 542 542 548 548 555 61 651	6 12 6 16 6 29 6 30 6 33 6 44 6 44 6 50 7 7 7 19	(5) See (6) Re((7) A I (8) See
21	h. m. 15 o 5 10 5 26 5 26 5 27 5 34 5 34	6 13 6 17 6 17 6 17 6 23 6 30 6 36 6 46 6 46	6 47 6 52 7 4 7 5 7 8 7 8 7 20 7 20 7 25 7 7 25	
11		6 57 6 57 6 57 7 2 7 16 7 2 7 25 7 25	7 26 7 31 7 45 7 45 7 47 7 47 7 59 8 3 8 3 8 3 8 34,	1.73
el	h. m. 13 41 6 24 6 24 6 44 6 45 6 53 7 8	7 31 7 36 7 36 7 36 7 36 7 36 7 36 7 36 7 36	8 6 8 10 8 23 8 24 8 24 8 26 8 38 8 38 8 42 8 44 9 13 9 13	
Decl.	, - ' + 56 17 + 53 23 + 60 20 + 15 0 + 19 38 + 19 38	- 3 19 + 5 56 + 26 29 + 45 25 + 19 0 - 0 49 + 15 0 + 41 44	+++7 42 +-54 44 +4 56 ++39 6 ++18 46 ++55 31 ++55 18 ++47 47 ++39 7 ++26 22	ur s. f.
R.A.	m. 4.8 9.5 25'9 25'9 25'9 25'9 49'2	12 12'3 12 16'7 12 16'8 12 22'6 12 22'6 12 23'9 12 33'9 12 45'6	12 46'5 13 51'1 13 51'1 13 51'1 13 4'0 13 7'3 13 23'3 13 25'1 13 42'1 13 42'1 13 53'3	10 mag. sti
Visible	AprJuly AprJuly AprJuus AprJune AprJune AprJune	AprJune AprJune AprJune AprJune AprJune AprJune AprJune	AprJune AprJuly AprJune AprJune AprJune AprJuly AprJuly AprJuly AprJuly	oper motion; a t 113°: 63″'r. through space. f.
NAME OF OBJECT		 P. xii, 32 Virginis 17 Virginis 12 Comæ Berenicis Pair in Canes Venat. 24 Comæ Berenicis y Virginis y Virginis Nebula in Coma Berenicis 	32, 33 Comes Berenicis Pair in Ursa Maj ø Virginis * Canum Venat Cluster in Coma Berenicis ¢ Urses Maj. (<i>Mizar</i>) Pair in Draco	 (i) Large common proper motion; a ro mag. star s.J. (2) A blue 6'5 mag. at r13' 63''r. (3) Moving together through space. (4) An 8 mag. star s.J.

JUNE

COLOURS AND REMARKS	White, deep purple (1). White, bright ashy blue. Deep yellow, reddish violet (2). Deep yellow, fine blue (3). Pale yellow, light grey (4).		White, ashy blue. White, pale yellow. Binary (9). White, lilac (ro). Yellow, golden. White, bluish. Quadruplex (rr). Both white. Binary (r2).	Very cmprsd., like a comet (13). White, blue Binary (14). Yellow, lilac. Red, blue (15). White, ashy green (16).	(10) A 7 mag. at 31°: 530″. (11) A 7 mag. at 31°: 530″. (11) 4 3 is a close pair, having a blue 67 mag. at 7°: 0″.9, and the 7°0 at 41″°o is also double, with a bluish so mag. at 9° 2″.0. (12) Large common proper motion. Long period binary. (13) A temporary star, 6'5 mag., appeared in this cluster in 1860, and lasted about (14) Period very long, 850 years about. A faint star at 88° 57″'5. (15) Both stars have the same small common proper motion.
Mag.		4'6, 6'7 5'5, 7'5 6'7, 7'0 5'8, 6'8 3'4, 7'4 9'5-11 9'5-11 6'7, 8'2 6'7, 8'2	4'4, 5'9 5'0, 5'4 5'1, 6'1 4'3, 7'0 7'0, 7'1	IO-IO'5 5'8, 6'7 3'6, 8'8 I'1, 7'3 5'2, 6'3	ue 6'7 mag. at 3'0 mag. at Long per peared in out. A fai out. A fai common F
Posit. Angles		260 291 346 10 79 79 188 188	302 196 25 11 337 337 330	206 239 271 115	ng a bl bluish a notion. ag., ap ears ab re small s, at 194
Dis- tances	38.2 5.9 8.9 3.0 3.0	3.3 15.4 9.7 24.7 105.2 12.0	6'2 13'4 30'0 41'0 3'8	3.8 3.6 3.6	:: 520''. ir, havir , with a proper 1 ar, 6'5 m ar, 6'5 m g, 850 y the sam Draconis
30	h. m. 15 35 7 37 8 0 8 4 8 4 8 5 8 9		9 23 9 23 9 27 9 30 9 33	9 35 9 35 9 41 9 47 9 58	mag, at 31 ^c is a close pa also double ge common ge common ge common iod very lon h stars have o mag., 16 J
21			9 35 9 58 9 59 10 3 10 5 10 8	IO IO IO IO IO I7 IO 22 IO 33	(10) A 7 m (11) 4'3 is (11) 4'3 is (12) Large (12) A ten (13) A ten (14) Periot (16) A 5'0
	h. m. 14 20 8 52 9 15 9 19 9 19 9 19	9 26 9 30 9 47 9 47 9 50 9 52 10 4 10 12	IO 14 IO 37 IO 38 IO 42 IO 45 IO 47	IO 50 IO 50 II 2 II 13	
H	h. m. 13 41 9 31 9 54 9 58 9 59 10 3	10 5 10 17 10 17 10 26 10 29 10 31 10 44 10 51	10 54 11 17 11 17 11 21 11 24 11 26	II 29 II 29 II 35 II 41 II 52	al pair) istance in e, with a
Decl.	° ' +5153 +1654 -2457 +2733 -1534	+ 19 34 -20 54 + 5 56 + 19 42 + 33 44 + 2 31 + 2 31 + 2 5 54 - 8 25	+37 o -11 4 -19 30 +17 21 -19 10 +13 50	-22 42 +34 9 +19 25 -26 11 +53 9	an unequ At 281"d
R.A.	h. m. 14 12'1 14 35'4 14 35'4 14 40'0 14 44'6	46'1 50'8 7'7 7'7 10'9 12'7 12'7 12'7 32'5	IS 35'I IS 58'8 IS 58'8 IS 2'9 IS 8'0 IS 8'0	16 10'3 16 10'4 16 16'9 16 22'4 16 33'5	years. motion. Serpentis (o : 7/"3, 1 o : 102 ³ : 1
Visible	(1) (1)	May-July May-June May-July May-July May-Aug, May-July May-July May-July	May-July May-July May-July May-July May-July May-July	May-July May-Aug. May-July May-July AprAug.	" (5) Period 127 years. common proper motion a r9 notet, at 660 : 7"" att violet, at 660 : 7"" all pait, 73, 800 : 103
NAME OF OBJECT	Sidereal time at 9 P.M. , Boötis	¢ Boötis P. xiv. 212 Libræ. Pair in Virgo Pair in Boötes 8 Boötis Cluster in Libræ. Pair in Corona Bor.	 ζ UOTONER HOT. ξ Scorpionis * β Scorpionis κ Heroulis * ν Scorpionis * 49 Serpentis 	 c Cluster in Scorpio σ Coronæ Bor. γ Hereulis α Scorpionis * (Antares) I7 Draconis 	 (1) Common proper motion. (2) Common proper motion. (3) Einary? "Upplex pulcherrima." (4) Common proper motion. (5) Pair resembling & Cygni, large common proper motion. (5) Pair resembling & Cygni, large common proper motion. (5) As seconds (of time) preceding and r/ north of 5 Serpentis (an unequal pair). (6) Pair resembling and r/ north of 5 Serpentis (an unequal pair). (7) Common proper motion. (8) As seconds (of time) preceding and r/ north of 5 Serpentis (an unequal pair). (9) Pair resembling and r/ north of 5 Serpentis (an unequal pair) the direction of r00° is a small pair, 73, 80 : roo² : r0² 5; blue, with a faint star at 6r⁴.

JUNE

JUNE (Mean Time of Transit at Greenwich).

1	
	Mag.
2).	Posit.
enwich	21 31 Dis- Posit.
t Gre	31
nsit a	21
of Tra	11
Time o	F
JULY (Mean Time of Transit at Greenwich	Decl.
JULY	R.A.

COLOURS AND REMARKS	Yellowish, reddish, Yellow, white (1). 7' by 3'. Faint. Blue, very blue (2).	Red orange (3). White, yellowish white (4). Lemon yellow, derp blue (5). White, olive.	Both white (6). Both white. Deep yellow, fine blue. White, whitish blue. White, bluish white.	Both white (7). White purple. Yellow, ashy green (8). Deep yellow, blue. Both white.	Yellow, bluish yellow (9). Greenish yellow, ashy green. White, deep violet. White, olive. White, blue (10).	A small white nebula with a bright nucleus in the field, A . Colours and magnitudes variable. Binary, period 261 years, 6'5 is double with an 8 mag, companion at roo ² : 0 ¹⁰ 8; i this forms a binary pair, period 270 years; the two form a ternary system with μ Boöts fiself. Change, owing to proper motion of 6°0 mag.
Mag.	6'3, 7'0 5'6, 6'0 6'2, 9'3	5°0 6'3, 6'7 4'5, 6'6 6'4, 8'5 5'7, 6'5	60, 72 61, 70 25, 50 52, 62 55, 62	6'2, 7'0 6'0, 8'2 5'0, 5'9 6'7, 8'5 6'3, 7'3	4'5, 6'5 3'9, 5'5 7'0, 7'9 6'9, 8'4 6'0, 8'5	 (7) A small white rebula with a bright nucleus i (8) Colours and magnitudes variable. Binary, (9) 65 is double with a 8 mag. companion at pair, period zyo years; the two form itself. (10) Change, owing to proper motion of 6° mag.
Posit. Angles	35 35 296 141	208 238 176 188	296 262 335 335 45	342 157 241 107 172	172 188 323 323 92	rith a br s variat mag. c ears; th er motio
Dis- tances	= = = = = = = = = = = = = = = = = = =	85.8 12.8 4.1 6.2	35°0 25°5 3°0 1°4 3°5	40°3 35°5 5°0 75°8 13°2	108°3 3°4 3°7 10°4 76°1	nebula w agnitude ith an 8 d 270 yr
31	h. m. 17 38 4 31 4 32 4 32 4 34 4 58	4 59 5 8 5 32 5 34 5 41	5 42 5 47 6 3 6 9	6 19 6 20 6 35 6 35 6 35	6 43 6 52 7 5 7 14 7 19	all white r double w air, period self. ge, owing
21	h. m. 16 58 5 10 5 12 5 13 5 13 5 38	5 39 5 48 6 12 6 14 6 20	6 21 6 26 6 42 6 43 6 48	6 58 6 59 7 15 7 15	7 22 7 31 7 44 7 54 7 59	(7) A sm (8) Colou (9) 6'5 is p it (10) Chan
11	h. m. 16 19 5 49 5 51 5 52 6 17	6 18 6 27 6 51 6 53 6 59	7 I 7 25 7 25 7 25 7 27	7 38 7 38 7 42 7 54 7 55	8 11 8 11 8 24 8 33 8 33 8 33	
H	h. m. 15 39 6 28 6 30 6 32 6 32	6 57 7 6 7 30 7 32 7 33	7 40 7 44 8 1 8 4 8 7	8 17 8 17 8 21 8 33 8 33 8 34	8 41 8 50 9 3 9 12 9 17	
Decl.	° ' - 18 13 + 67 54 + 42 38 + 20 32	+55 16 +21 50 +52 19 +20 40 +8 5	-19 27 +28 49 +27 33 -13 41 +49 11	+54 18 +47 43 +48 6 +51 22 +10 50	+37 45 +10 55 +36 48 + 3 44 +3 39	
R.A.	h. m. 13 7'4 13 9'2 13 10'7 13 10'7 13 35'3	I3 36'4 I3 45'2 I4 9'4 I4 11'3 I4 17'6	14 19'1 14 23'6 14 40'0 14 43'1 14 45'8	I4 56'2 I4 56'7 I5 0'1 I5 12'4 I5 13'3	15 20'2 15 29'4 15 42'2 15 51'5 15 56'7	ther <i>n. p.</i>
Visible	- May-July May-Aug. AprJuly	May—Aug. Apr.—July May—Aug. Apr.—July Apr.—July	May—July Apr.—July Apr.—July May—July Apr.—July	Apr.—July Apr.—July Apr.—July Apr.—July May—July	May—July May—July May—July May—July Maya-July	: 120/".9. , one s. p., the o 1868, . star. 18°2 mag, at 10
NAME OF OBJECT	Sidereal time at 9 P.M. 54 Virginis	83 Urssa Maj. P. xili. 219, 220 Boötis . * Boötis . Pair in Boötes . P. xiv. 69 Boötis .	X Turdi Solitarii Pair in Boötes	Pair in Boötes'. Pair in Boötes	 μ Boötis δ Serpentis Pair in Corona Bor. P. xv. 220 Serpentis ρ Coronæ Bor. 	 (1) An 8° mag., deep blue, at 23° : 120".9. (2) Two other blue stars in the field, one s. p., the other m. p. (3) Enginence auddeniy in August 1866. (4) In field with 6 Bootis, a 5 mag. star. (5) Moving together through space. (6) 7° is a close pair, there being an 8° 2 mag. at 102° : 1".4.

JULY

-
670
-
t Greenwich)
-
60
N
at
2
Transit
100
S
000
0
14
Sec.
-
2
of
-
10
-
200
-
Time
2.000
-
~
1
844
~
~
Q.
-
(Mean
Street,
1
× 1
~
JULY

COLOURS AND REMARKS	Deep yellow, blue. Pale topaz, blue (1), White, ashy green. Binary (2). Superb. Visible to naked eye (3).	Globular, 3' diam. Reddish yellow, blue. 10' diam. (4). Rdsh. white, white. Ehary (5). Reddish yellow, yellow, fol.	Golden, perfect azure (7). Pale white, ruddy purple (9). Compressed cluster, faint. Both white. White, ash. Binary (9).	Deepyel., rdsh. purp. Bin. (10). Large, scatter'd, 100 stars at least. The 'Horse-shoe.' Vis, in finder Bright. Globular. [(11). Pale sapphire, blue (12).	White, blue (13). Both white. Magnificent; fan-shaped; 12' Whitish yellow, blue (14). Bright yellow, blue.	 (g) Period ar8 years; a 0'5 mag. at ra7°: ro0".3. (10) Period ar8 years; a 0'5 mag. at ra7°. ro0".4. (11) Period 9.4 years. Distance of 70 Oph. 1, 270,000 times that of the Earth from the Sun. (11) In a magnificant group of stars. In a state of change. (12) Distance of Yeg 1, 440,000 times that of the Planet Neptune from the Sun. (11) In a magnificant group of stars. In a state of change. (12) Distance of Yeg 1, 440,000 times that of the Earth from the Sun. Another (13) e^{1-ex}. Tr3°: Soveral stars between. (13) e^{1-ex}. Tr3°: Soveral stars between. (14) B Lyre in var. 3'5 to 4'5 units, using 0', 9'', 0''', and a 9'4, lilac, at 10° : 85''''''. A minute pair s./.
Mag.		9-11 67,77 9-11 5°0,5°0 5°5,5°5	3°, 5°5 2°, 8°2 1°-11°5 5°5, 6°2 5°3, 6°2	4°3, 6°2 9-10 9'11 0°2, 9°5	4.6, 6'3 5'1, 5'2 8-10'5 Var. 7'0 4'7, 8'1	at rsy° : rc of 70 Oph, of 70 Oph, system this stars equal result of rstars betwostars betwostars betworstars betworstars betwort s. f.
Posit Angles	357 357	350 163 198	116 186 94 256	8 8 36	16 135 - 149 338	5 mag. istance ss of the the two of star o, ooo tir Several 40°: 15 Several mag., inute pa
Dis- tances	* 46'9 3'8 1'7	47°3 1 2°4 2°4 2°4	47 1655 	2.1 1 64	3.1 2.6 45.6 31.4	urs; a 9 ars. D ars. D un; ma etween nt group sea 1,34 ble ?, at 207/'.5. r. 3'5 to r. A 9'2
31	h. m. 17 38 7 28 7 41 7 41 8 0	8 10 8 10 8 14 8 25 8 31	8 32 8 33 8 36 9 19 9 19	9 22 9 35 9 35 9 52 9 55	10 3 10 3 10 7 10 8 10 8	iod 218 yea (rod 248 yea from the S fitstance b the Sun. magnifice ance of V_i ance of V_i and V
21	h. m. 16 58 8 7 8 21 8 27 8 27 8 39	8 43 8 49 8 53 9 10 10	9 11 9 12 9 15 9 41 9 59	IO I IO I IO I IO 31 IO 35	10 42 10 42 10 47 10 47 10 51	 (9) Pericipation (10) Pericipation (11) Paricipation (11) Paricipation (12) Distance (13) e^{1-e³}/₁ (14) β Ly, 1
:	h. m. 16 19 8 46 9 0 9 19	9 22 9 28 9 32 9 44	9 51 9 51 9 55 10 20 10 38	ro 41 ro 53 ro 54 ri 54 ri 16	II 21 II 21 II 26 II 27 II 30	
н	h. m. 15 39 9 26 9 46 9 46 9 58	IO 2 IO 8 IO 12 IO 23 IO 29	10 30 10 31 10 34 10 34 10 59 11 17	11 20 11 33 11 33 11 33 11 50 11 53	12 I 12 I 12 5 12 5 12 6 12 10	e. Back- lares. A s remark- out three
Decl.	-23 11 +70 34 -23 11 +36 41	- 1 45 + 59 41 - 3 55 + 54 37 - 26 25	+14 31 +24 59 +43 15 + 2 38 - 8 11	+ 2 32 -13 50 -17 11 -23 59 +38 41	+39 33 +39 30 - 6 25 +33 14 +59 15	faint one at twice the distance. Back- e that, rinkled over it, ange. A mag. at 12' 10'' shares. A which a 7 mag. at 12' 10'' shares. A close pair are variable. a) o var. from 3 o to 4 o in about three
R.A.	h m. 16 52 16 187 16 252 16 376	16 41'3 16 47'2 16 51'2 17 3'0 17 8'4	I7 9.4 I7 10°3 I7 13°7 I7 38°8 I7 38°8	17 597 18 12'4 18 13'0 18 29'5 18 23'1	I8 40.6 I8 40.6 I8 45.0 I8 45.9 I8 49.5 I8 49.5	e at twice over it. 7 mag. at 10 connect from 3'0 f
Visible	June—July June—Aug. May—Sept.	June-Aug. May-Oct. June-Aug. May-Oct. June-July	June-Sept. May-Sept. May-Oct. June-Aug.	June-Aug. July-Sept. July-Sept. June-Nov.	June-Nov. June-Nov. June-Sept. June-Nov. May-Nov.	it 15" and 16" and a faint one at twice the rise black. r perlaps nearly twice that. y show a few stars sprinkled over it. 30 Oph., 50 mag., orange. proper motion, in which a 7 mag. at 22" ryoff from the close pair is not connected. The two stars of the close pair are variable, mon proper motion. 30 var. from 30 to 4"
NAME OF OBJECT	Sidereal time at 9 P.M. Pair in Draco	Cluster in Ophiuchus . Pair in Draco Cluster in Ophiuchus . # Draconis	a Herculis	70 Ophiuchi*	 t Lyres t Lyres Cluster in Antinous β Lyres o Draconis 	 (i) Two 8 mag, stars at r₂s["] and r₀r" and a faint one at twice the distance. Back. (a) Period r₂s perhaps marry twice that. (a) Small apertures only show a few stars sprinkled over it. (b) So f₁, a little sr. of 30 Oph., 5°0 mag., orange. (c) Simary, very large proper motion, in which a 7 mag. at r² ro["] shares. A 0 mag. at 30 sy years. The two stars of the close pair is not connected with this remark. (c) Binary, but common proper motion. 3°0 var. from 3°0 to 4°0 in about three (8) Rectilinear motion.

JULY

15

-
Greenwich)
.0
2
3
42
61
é
6
Ch
0
at
8
of Transit
3
2
a
10
N
A
2
0.
S
2
202
N
Time
Mean
2
ie.
5
2
-
1 .
H
in
01
5
2
e 10
C
AUGUST
3
-
C
-

10			nocoor		Constant of	
COLOURS AND REMARKS	Yellow, white. Yellow, yellow (1). Faint, large. White, blue.	Planetary, 8" diam., blue (2). Rose, blue. White, ash. White, reddish yellow (3). Golden, perfect azure (4).	Greenish white, emerald (5). White, reddish blue. Yellowish white, white (6). Golden, turquoise. White, deep blue.	Green, red $\langle \gamma \rangle$. White, sky blue. Deep yellow, indigo blue. Visible to naked eye. White, blue (8).	Yellow, deep blue. White, green. Fine red. Annular, 70" by 55". Yellow, golden yellow (9).	 (5) In field a. f. is a pair, 5'8, 8'5, 13°: 32"/6. Yellow, blue. (6) Common proper motion. (7) The colours have been thought variable. A 7 mag. a. p. (8) A 7'5 mag., ashy blue, at 21°: 89"/3. (9) Suspected of variability; fine field.
Mags.	6'2, 7'3 5'1, 5'6 10-11 5'7, 6'7		4.6, 5.5 5.6, 7.3 4.7, 4.7 6.0, 8.5 4.5, 7.7	5'0, 5'2 6'3, 8'0 5'7, 7'7 9-10 5'2, 8'1	5.7, 8°0 4°0, 6°0 7°5 4°0, 4°4	(5) In field s. f : is a pair, 5.'8, 8.5, 13°: 32″'6 (6) Common proper motion. (7) The colours have been thought variable. (8) A 7 5 mag., ashy blue, at 21° : $80^{''3}$. (9) Suspected of variability ; fine field.
Posit. Angles	° 165 233	- 230 92 116 116	313 191 313 8 143	261 120 316 359	272 149 I04	5.8, 8.5 n n though ity; fin
Dis- tances	33.8 369'4 69'5	82'3 22'3 294'7 4'7	3.8 41.3 61.8 16.1 54.8	6'0 3'8 3'8 3'6	25.8 43.7 21.8	s a pair, er motic ave beer shy blue variabil
31	h. m. 19 40 5 39 5 47 5 56	6 6 0 6 8 1 6 30 6 8 1 6 8 7 6 8 7 6 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	6 40 6 50 6 50 7 15	7 17 7 21 7 42 7 42 7 43	7 52 8 1 8 4 8 10 8 11	field s. f. is imon prop colours hi 5 mag., as pected of
21	h. m. 19 9 6 1 6 18 6 26 6 35	6 40 6 40 6 41 6 59 7 9	7 20 7 30 7 36 7 55	7 56 8 0 8 21 8 22 8 22	8 31 8 40 8 44 8 49 8 49 8 50	(5) In f (6) Com (7) The (8) A 7' (9) Sus ₁
:	h. m. 18 21 6 40 6 58 7 5 7 14	7 19 7 20 7 21 7 38 7 49	7 59 8 8 8 16 8 34	8 36 8 39 9 1 9 1	9 IO 9 20 9 28 9 28 9 28	at
н	h. m. 17 42 7 19 7 37 7 45 7 54 7 54	7 58 7 59 8 17 8 28	8 38 8 48 8 48 8 55 9 13	9 15 9 19 9 40 9 40 9 41	9 50 9 59 10 2 10 8 10 9	°5 mag.
Decl.	° (+ 13 38 + 33 58 - 12 47 + 4 26	39'7 +24 I 40'3 + 8 47 41'4 + 2 16 58'9 +13 44 9'4 +14 31	+37 15 +940 +55 16 +24 34 +24 34	+21 36 +48 27 + 0 8 + 6 29 +58 44	+52 16 +37 29 - 8 2 +32 53 + 4 3	ns; v ⁱ a ro
R.A.	h. m. 16 0'7 16 18'2 16 26'1 16 34'9	r6 39.7 r6 40.3 r6 41.4 r6 58.9 r7 9.4	I7 19'7 I7 29'2 I7 29'9 I7 36'4 I7'54'9	I7 56'7 +21 18 0'1 +48 18 21'4 + 0 18 22'0 + 6 18 22'2 +58	18 31'3 +52'16 18 40'8 +37'29 18 49'3 +32'53 18 50'5 +4'3	companio 4".6, in field s. , heavens.
Visible	June—Sept. May—Sept. June—Aug. June—Sept.	June—Sept. June—Sept. June—Sept. June—Sept.	June-Sept. June-Sept. May-Oct. June-Sept.	June-Sept. May-Oct. July-Sept. May-Oct.	May-Oct. June-Nov. July-Oct. June-Nov. July-Sept.	d v ^a have small arnet, at r5°: ro reddish 6 mag. est objects in the
NAME OF OBJECT	Sidereal time at 9 P.M. Pair in Hercules Cluster in Ophiuchus *	Nebula in Hercules. 43 Herculis 19 Ophiuchi	 ρ Herculis	95 Herculis Pair in Hercules	Pair in Draco	(i) A grey 6 mag. $f_r v^{*}$. Both v^{*} and v^{*} have small companions; v^{*} a 10'5 mag. at 2370 ; 60''4, v^{*3} 3'5 mag. garnet, at 15'; 104''6. (a) Equal in light to 8 mag. start: a reddish 6 mag. in field $s_r f_r$ (b) A 7 mag. at 13': 33'' r_r . (4) See July list. One of the loveliest objects in the heavens.

16

AUGUST

COLOURS AND REMARKS	White, red lilac. Deep yellow, yellow (r). Bluish white, violet (2), Yellow, blue (3).	Golden, blue (4). Fine ruby. White, violet. Deep yellow, turquoise. The 'umb-bell ' Neb ula.	White, turquoise (5). 6'5-9'0? Pure ruby. Both deep yellow (6). Orange, violet. White, bluish white.	Reddish yellow, green (7). White, ashy blue (8). Yellow, blue. Golden yellow, orange (9). White, blue (10).	Deep yellow, lilac. Globular, 5' diam. 3§' diam. Splendid, 1° diam. Deep yellow, violet.	5.7 variable in colour. An 8 mag. at 141" m.f. 61 has a 68 mag. conves at 285" : 11"3. Binary. Motion probably rectilinear, not binary, as has been supposed, with very large common proper motion. One of the first stars whose distance was deter- nined : rectant measures give about 430,000 times the distance of the Earth from the Sun.
Mag.	6'0, 7'5 5'8, 6'1 4'1, 8'0 5'0, 8'0	2'7, 5'3 6'5 1'0, 9'0 4'2, 7'2	6'0, 8'1 Var. 3'0, 4'0 5'0, 8'3 6'0, 7'0	4'0, 5'7 6'1, 7'4 6'0, 8'0 5'0, 6'0 6'1, 8'1	4'3, 8'2 10'5-11'5 10'0-11'5 7-10 2'4, 8'8	 (7) 5.7 variable in colour. An 8 mag. at 14" m./. (8) 6.1 has a 6'8 mag. <i>connes</i> at 88, '1 ""3. Binary, (9) Motion probably rectilinear, not binary, as has be common proper motion. Une of the first statmined: recent measures give about 43000 tiffrom the Sun. (10) A third, 10 mag, at 58", a fourth more distant.
Posit. Angles		310	326 177 240	271 73 192 121 313	311 322	An 8 n ss at 28 near, ne ion. (ion. ures gi ures gi s'', a fo
Dis- tances		34`5 	11'4 	111.3 10.6 2.7 20.7 3.5	36'2 	colour. ug. <i>com</i> y rectili per mol nt meas n. at 5
31	h. m. 19 40 8 19 8 30 8 30 8 33	8 46 8 48 9 5 9 15 9 15	9 25 9 30 9 33 9 33 9 43	I0 I I0 I3 I0 I8 I0 22 I0 24	10 37 10 44 10 47 10 48 10 58	variable in col variable in col tion probably common prope nined : recent rom the Sun. third, zo mag.
21	h. m. 19 10 8 59 9 9 9 9 9 12	9 26 9 27 9 45 9 48 9 54	IO 4 IO IO IO II IO I2 IO 23	10 41 10 53 10 57 11 1 11 3	11 16 11 24 11 27 11 27 11 38	(7) 5.7 vv (8) 6.1 h (9) Motio (9) Motio (9) Motio (10) A th
1	h. m. 18 21 9 38 9 48 9 49 9 51	10 5 10 7 10 24 10 23 10 33	IO 44 IO 49 IO 50 IO 52 II 2	11 20 11 32 11 37 11 37 11 40 11 42	II 55 12 3 12 6 12 7 12 7 12 17	
H	h. m. 19 42 10 17 10 28 10 28 10 31	IO 44 IO 46 II 3 II 7 II 13	11 23 11 28 11 28 11 30 11 31 11 41	II 59 I2 II I2 I6 I2 20 I2 22	12 35 12 42 12 45 12 45 12 46 12 56	Distance, 430,000 druple, and a very mes at 221°: 44 ⁽¹ -3)
Decl.	° ' - 4 12 +49 40 +38 57 +37 56	+27 43 -16 37 + 8 34 +69 59 +22 25	+20 34 -21 40 -12 54 -19 28 -18 57	+15 43 + 3 51 - 6 16 +38 11 +29 43	+ 19 19 + 11 39 - 1 20 + 47 56 + 9 21	Distanc adruple, a
R.A.	h. m. 18 59'0 19 9'2 19 9'9 19 12'4	19 26'1 15 27'8 19 45'2 19 48'6 19 54'6	20 4'9 20 10'4 20 11'7 20 12'8 20 23'4	20 41'4 20 53'4 20 58'1 21 1'8 21 3'8	21 16.8 21 24 ⁵ 21 27 ⁵ 21 27 ⁵ 21 28 ¹ 21 38 ⁶	61 Cygni. iful field. carsely qu
Visible	July-Oct. May-Nov. June-Nov. June-Nov.	July-Nov. July-Sept. July-Oct. July-Nov.	July-Nov. AugSept. AugOct. AugSept. AugSept.	July–Nov. July–Oct. July–Oct. Jan.–Nov. July–Nov.	July–Nov. July–Nov. July–Nov. July–Nov. July–Nov.	air resembling he Sun. Beauti aloured pairs. 5. '4. a' has a g m
NAME OF OBJECT	Sidereal time at 9 P.M. IS Aquilæ 6 (Bode) Cygni	 R Cygni (Albirco) Red star in Sagittarius a Aquilæ (Altair) Draconis Nebula in Vulpecula 	 θ Sagittæ. Red star in Capricornus. α^a aⁱ Capricorni. σ Capricorni. α^o Capricorni. 	y Delphini	I Pegasi	 (1) Large common proper motion pair resembling 6r Cygni. Distance, 430,000 times that of the Earth from the Sun. Beautiful field. (a) Three other pairs in large field. (b) Fine field. (c) Nose of the finest and brightest coloured pairs. (c) for of the finest and brightest coloured pairs. (c) a 6'7 mag., yellow, at 220'; 7('''). (c) a magling comes at 150°; 154'''s which is coarsely quadruple, and a very small doubte comes at 150°; 17'', a' has a g mag. tilat comes at 220'; 14''.

AUGUST (Mean Time of Transit at Greenwich).

AUGUST

17

Ċ

SEPTEMBER (Mean Time of Transit at Greenwich).

	18	SEPTEMBER	
	COLOURS AND REMARKS	h. m. ah. m. h. m. am. m. am. am. am. 	(8) The colours should be watched ; they are possibly variable.
	Mag.	6'0, 8'7 6'9, 7'9 6'9, 7'9 6'9, 7'9 6'8, 7'7 6'8, 7'7 5'5, 5'5 6'8, 7'7 5'7, 7'8 6'8, 8'2 6'8, 8'2 6'8, 8'2 6'8, 8'2 6'8, 8'2 6'8, 8'2 5'7, 7'2 6'8, 8'2 5'7, 7'2 5'3, 7'3 6'8, 8'2 6'8, 8'2 5'7, 7'2 5'7, 7'2 5'7, 7'2 5'7, 7'2 6'8, 8'2 5'7, 7'2 6'8, 8'2 6'8, 8'7 6'8, 8'8 6'8, 8'8 7'8, 8'8 6'8, 8'8 7'8, 8'8 8'8, 8'8 7'8, 8'8 8'8, 8'8 8'8	; they are I
	Posit. Angles	280 280 283 283 283 283 283 283 252 255 255 255 255 255 255 255 255 25	atched
1	Dis- tances	25'1 26'5 19'5 19'5 19'5 19'5 19'5 19'5 19'5 19	uld be w
	30	21.38 21.38 4.45 5.7 <	lours sho
	21	21. m. 21. m. 21. m. 22. m. 25. 5 25. 5 25. 5 26. 1 27. 5 28. 5 29. 5 20. 7 20. 7 20. 7 20. 7 20. 7 7 20. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	(8) The co
a subset	11		
	-	19 44. m. m. 6 19 6 19 7 15 7 15 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 17 7 18 8 18 8 13 8 5 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 9 0 10 0	ıgh space ıtiful pair
	Decl.	• - 1 31 - 1 31 + 11 30 + 25 20 + 30 3 + 12 10 + 50 3 + 56 3 + 56 3 + 56 5 + 56 5 + 56 5 + 52 15 + 52 15 + 12 44 + 12 55 + 50 53 + 50 55 +	ether throu te and beat
	R.A.	h. m. h. m. ry 7 17 ry 745 6 ry 745 6 ry 7550 ry 550 ry 583 ry 768 ry 745 ry 768 ry 745 ry 768 ry 7583 ry 768 ry 778 ry 7787 ry 7787 ry 7787 ry 7787 ry 7787 ry 7787 ry 7787 ry	noving tog
	Visible	June-Aug. May-Sep. May-Sep. June-Sep. July-Sep. July-Sep. June-Nov. June-Nov. June-Nov. June-Sep. June-Nov. June-Nov. June-Nov. June-Nov. May-Nov. May-Nov. May-Nov. May-Nov.	ir. All three n e. n. f. 11 Aq. sky blue.
	NAME OF OBJECT	Sidereal time at 9 r.Mh. mt. m.Pair in Ophiuchus1m.Pair in Ophiuchus1m.Pair in Ophiuchus1m.Pair in Ophiuchus1-1Pair in Heroules-May-Sep.177527+1130639Pair in HeroulesMay-Sep.17547+30377Red star in Serpens17547+30377Nebula in Draco11-2717Nichula in Draco11-2713Nord Heroulis11-2713Nay-Oct-1111-713Nay-Oct-11-11-2713Nay-Oct-11-1111515715Pair in Draco-111-112715Pair in Draco-111-112715Pair in Draco-1111112715<	(4) 5.5 is a close and very unequal pair. All (5) In low power field with 11 Aquilae, π . f : 5.1, 9.0 : 260° : 17"0, white, sky blue

SEPTEMBER

SEPTEMBER (Mean Time of Transit at Greenwich).

		SE	PTEMB	EK	13.000	19
COLOURS AND REMARKS	Red, blue. Superb colours. White, olive blue. Orange, cerulean blue (1). Deep yellow, deep blue (2). White, deep blue.		Large and coarse. White, deep blue. White, bluish. Fairly bright, comet-like (5). Whitish yellow, blue (6).	Very red. Var. in colour and Deep yellow, blue. [mag.? Deep red orange. Topaz, blue (7). White, deep blue.	Both whitish yellow (8). Whitish green, green (9). White, amethyst. Opal, deep blue. White, deep blue.	 (6) Common proper motion, and probably binary. A 7°0 mag., blue, at 56³: 208", which does not belong to the system. (7) An 8'5 mag. n. /. (8) Binary of long period; 1,625 years. (8) There is a faint star at 28" from the 7°0 mag., and a yellow 9 mag. star at 8t" of from the 6°0 mag.
Mag.	7'2, 8'4 6'5, 7'7 4'0, 5'5 3'0, 6'5 6'0, 8'0	4'4, 9'0 6'5, 7'3 10'5-11'5 4'3, 6'5	9'5-10'5 3'5, 7'7 4'5, 8'5 10'5-11'0 4'5, 6'3	6'5 6'1, 8'1 5'4 6'8, 8'2 6'2, 8'3	4'1, 4'2 6'0, 7'0 5'9, 9'2 5'7, 8'4 6'2, 8'7	obably bina system. urs. the 7'0 mag
Posit. Angles	 335 233 233 233 267 118	60 262 153	250 69 119		329 186 115 281 281 276	and pr g to the 625 yes 8" from
Dis- tances	= 23.8 14.1 338'1 205'4 26'3	6.5 	13°5 47°5 	15.5 I	3'3 22'5 28'5 69'1 33'9	motion, ot belon, eriod; 1 star at 2 nag.
30	h. m. 21 38 7 22 7 31 7 32 7 37 7 37		8 47 8 49 8 53 8 56 9 I	9 3 9 15 9 30 9 36	9 45 9 52 10 3 10 10 10 20	 (6) Common proper motion, and probably the which does not belong to the system. (7) An 8: mag. ". /. (8) Binary of long period : 1,625 years. (8) There is a faint start at 28" from the 7" of from the 6" or mag.
21		8 38 8 44 8 45 9 2	9 23 9 28 9 31 9 36	9 38 9 46 9 51 10 5 10 11	10 20 10 28 10 39 10 46 10 56	 (6) Comme whi (7) An 8.5 (8) Binary (8) There (10) from
11	h.m. 2023 836 846 847 847 851 90	H U U 4	10 2 10 4 10 7 10 11 10 16	10 17 10 25 10 30 10 45 10 50	10 59 11 7 11 18 11 25 11 35	
н	h. m. 19 44 9 16 9 25 9 26 9 31 9 31	9 01 01 01 01 01 01 01 01 01 01 01 01 01	10 41 10 43 10 47 10 50 10 55	10 57 11 5 11 9 11 24 11 30	11 39 11 46 11 57 12 4 12 14	with small he cluster.
Decl.	° ' ' + 38 I + 46 24 - 15 10 + 56 16	+30 17 +58 19 -12 58 + 9 38	+46 36 +70 4 -19 58 -23 41 +28 14	- 2 44 + 19 11 + 63 4 - 21 38 + 37 11	- 0 36 +39 3 - 14 40 +67 23 +59 49	however, ' rallel. close s s t
R.A.	h. m. 19 59'5 20 9'1 20 10'0 20 14'6 20 23'6	47'I 47'I 47'I 47'I	21 25'3 21 27'2 21 33'9 21 33'9 21 33'9	21 40'6 21 48'9 21 53'4 22 8'0 22 13'9	22 23'0 22 30'7 22 41'6 22 48'7 22 58'7	ld. invisible, cetly on pa mag. star
Visible			July—Oct. July—Oct. July—Oct. July—Nov.	July–Nov. July–Nov. July–Dec. Aug.–Nov. July–Nov.	Aug.—Nov. 22 23'0 July—Nov. 22 30'7 Aug.—Nov. 22 41'6 — 22 48'7 July—Jan. 22 58'7	o7". 1. Fine fie hing nebulosity; 6 mag 23 ^m exa , and is 6' a . An 8
NAME OF OBJECT		52 Cygni	 β Cephei β Cephei β Capricorni β Custer in Capricornus μ Cygni 	Red star in Aquarius Pair in Pegasus Red star in Cepheus 41 Aquarii P. xxii. 65 Lacerteo	 Åquaril Åquaril å Lacertæ r Åquarii Pair in Cepheus Pair in Cepheus 	 (1) A 70 mag., deep blue, at 174°: 109"'1. Fine field. (2) A blue 8'5 mag. at 134°: 226"'', 107" 1. (3) In the midst of a wonderful branching nebulosity; invisible, however, with small instruments. (4) Follows P. xx. 335. Capricorni, 6 mag. 2³m exactly on parallel. (5) Precedes 41 Capr.(58 mag.) 1¹⁰ 40°, and is 6' a. An 8 mag. star close s, t the cluster.

SEPTEMBER

19

C 2

Greenwich).
at
Transit
of
Time
(Mean.
OCTOBER
-

COLOURS AND REMARKS	White, blue (1). Intense crimson. Var. Reddish yellow, blue. White, blue (2).	Both white. Reddish yellow, blue. White, deep blue (3). White, deep blue. Orange (4).	Yellow, deep blue. Golden, blue (5). Golden, light blue. Fine ; near Milky Way. White, sky blue.	Yellow, blue. Deep yellow, deep blue. Golden, whitish blue. Large and rich. White, blue.	Yellow, blue. Yellow, blue (6). Yellow, blue. Golden, emerald. White, deep blue.	(4) In fine group of stars, one of which, 6'2 mag., is also of a fine red orange colour. (5) Cf. August list. 5'3 has been thought variable. The colours of bright pairs are usually best shown by putting the stars <i>very</i> slightly out of focus, so as to enlarge the spurious disc. (6) Rapid rectilinear motion.
Mag.	5'2, 8'1 5'2, 8'1 6'8, 8'0 4'6, 6'3	5'1, 5'2 6'2, 9'0 6'3, 8'2 6'1, 8'3 6'1	6'7, 7'7 2'7, 5'3 5'7, 7'8 9'5-11'5 6'3, 8'0	6'2, 6'8 6'0, 8'2 5'3, 8'5 6'0-10'0 6'0, 7'2	6'5, 7'5 6'8, 8'5 6'0, 8'2 6'5, 9'0 5'8, 8'0	ch, 6'2 mag hought var putting the isc.
Posit. Angles	359 10 16	137 124 271 288 -	307 56 81 28	126 28 146 -	63 332 300 300 185	e of whi been t wn by urious d
Dis- tances	3.1 3.6 3.6	2.6 13.3 8.8	71.8 34.5 90.7 18.1	14.7 38.1 41.7 2.9	96'4 24'4 2'8 18'8 57'4	stars, on 5°3 has best sho ce the sp r motion
31	h. m. 23 40 3 43 3 43 3 49 4 0 4 о 4 1	4 17 4 17 4 25 4 36 4 42	4 44 4 46 4 52 4 58 4 59	5 2 5 18 5 27 5 36	5 39 5 54 5 57 6 18 6 20	e group of stars, one of which, tugust list. 5:3 has been thou are usually best shown by put as to enlarge the spurious disc. d rectilinear motion.
21	h. m. 23 3 4 22 4 28 4 39 4 40	4 40 5 4 5 16 5 21	5 26 5 32 5 33 5 37 5 37	5 41 5 41 5 58 6 7 6 15	6 19 6 34 6 36 6 57 6 59	 (4) In fine group of stars, one (5) Cf. August list. 5'3 has are usually best show are usually best show as to enlarge the sput as to enlarge the sput (6) Rapid rectilinear motion.
11	h. m. 5 1 5 7 5 19 5 20	5 35 5 43 6 0	6 3 6 5 6 11 6 16 6 17	6 21 6 21 6 37 6 46 6 54	6 58 7 13 7 37 7 37 7 38	
1	h. m. 21 42 5 41 5 47 5 58 5 58	5 59 6 15 6 23 6 34 6 40	6 42 6 44 6 50 6 55 6 57	7 0 7 16 7 25 7 34	7 37 7 52 7 55 8 16 8 18	o from e². part, form
Decl.	+58 44 +36 54 +44 49 +39 33	+39 30 +62 15 +34 35 +18 56 +19 34	+49 54 +27 43 +16 12 +39 56 +60 15	+35 49 +34 44 +49 47 +26 9 +55 2	+42 37 +38 15 +31 54 +31 54 +39 3 +41 10	olive blue
R.A.		18 40'6 18 56'1 19 4'2 19 15'8 19 21'3	19 23.7 19 261 19 37.3 19 38.3	19 41'5 19 41'6 19 58'2 20 7'2 20 15'6	20 19.2 20 34.3 20 36.4 20 58'0 20 59'6	m e¹ and 3 , two of wh ; yellow,
Visible	^h h. m. June–Nov. 18 22'2 June–Nov. 18 28'3 June–Nov. 18 40'6	June–Nov. June–Dec. July–Nov. July–Nov.	June-Nov. July-Nov. July-Nov. June-Nov. May-Nov.	June-Nov. 19 41'5 June-Nov. 19 41'6 May-Nov. 19 58'2 July-Nov. 20 7'2 May-Dec. 20 15'6	June-Nov. 20 19'3 June-Nov. 20 34'3 July-Nov. 20 36'4 June-Nov. 20 58'0 June-Nov. 20 59'0	9".3. 35°: 145"'4 fro 35°: 145"'7 fro 5truve. 74; 260°: 17"'1
NAME OF OBJECT	Sidereal time at 9 P.M. 39 Draconis Pair in Lyra *	 ^{e^a} (5) Lyrea Pair in Draco Pair in Lyra Pair in Sagitta Red star in Sagitta 	P. xix. 154 Cygni	P. xix. 276-7 Cygni P. xix. 276-7 Cygni	Pair in Cygnus Pair in Cygnus 49 Cygni Pair in Cygnus P. xx. 465 Cygni	(1) A 7'5 mag, ashy blue, at zr° : $8g''.3$. (2) Cf. July list. A ro'o mag, at $335''$: $145'''4$ from e' and 37° : $12g''o$ from e'. Several other minute stars between the pairs, two of which, $45''$ apart, form the 'duplex debilissima 'of Struve. (3) Another pair in field $\pi.f: 6'4, 7'4; 250^{\circ}: 17'''1$; yellow, olive blue.

20

OCTOBER.

(5) A 9.5 mag. at 39° : 90''.3 : a 6.7 mag. at 38° : 236''.7, and a distant 7'5 mag. (6) for intength, followed by splendid field. (7) A is var. 3'5 or 4, mag. in 54'' 8th 43th. (8) An 8 mag. at 140° : 48''.5. Moving. (9) CL January list. (ro) Magnificent colours. A var. 5'0-8'0 mag. (?) Cf. January list. Reddish white, greyish blue. COLOURS AND REMARKS Fine, but straggling (6). Yellowish white, bluish. Very large, but poor. Yellow, deep blue (7). Ruby, deep blue (10). Orange, sky blue (q). White, bluish white, Deep yellow, bluish. Yellow, purplish (I) White, ashy green. Golden, turquoise. White, bluish (3). Yellow, white (8). Deep orange (4). White, grey (2). Fine orange red. Planetary, blue. White, bluish. Both white (5). Orange, blue. Copper red. Both white. White, red. Var. 7'7 5.2. 6.8 4.5, IO'O 5.0, 6.0 5.4, 6.2 Var. 5'7 5'0, 9'0 9.2 'I.S 5.2 '8.5 0.6 '0.8 6.8, 7.3 4.0, 8.5 2.2 '0.2 5.2 '5.9 6'0, 6'4 4.0, 9.0 6'I, 8'3 2.2 '8.9 Mag. 11-6 Var. 8-10 0.5 5.9 1 Posit. Angles 312 349 121 195 244 192 339 253 293 147 163 253 297 96I 270 21 73 305 0 1 1 1 1 1 1 Dis-tances 0.192 6.291 9.I 40.0 2.68 183.4 8.68 74.3 6.85 8. II 5.6I 2.2 8.5 40.8 9.6 32.0 49.4 4.8 1 = 1 1 l 1 29 53 9 40 13.3 щ 6 0 00 15 16 50 58 0 3 19 38 30 38 3 31 5 24 31 ų. 23 9 9 9 2 5 5 0 5 2 5 5 2 8 00 00 8 8 8 00 8 8 6 0 6 $\omega \omega$ 0 01 18 61 ii. 31 35 39 547 55 30 24 37 43 46 58 4 0 L 42 42 54 21 41 ų. 23 2 00 00 8 8 8 8 6 6 6 6 6 6 ~ 5 5 5 5 8 00 8 0 6 20 E. 22 48 II 14 19 27 33 35 39 3 16 20 22 38 38 43 43 56 53 21 22 34 -Ч. 55 N 00 6 6 01 OI 00 00 8 00 00 00 00 8 6 6 6 6 6 6 6 6 6 OI (1) 4.5 is an excessively close pair, having the shortest period known among binary stars as yet, about 10% years. A 7 5 mag, blue, at 340° : 19/4.8. Sir W. Herschel's 'garnet' star, now orange. Variable, 4-6 mag, but period IO 28 h. m. 21 42 0 27 50 533 9 13 14 81 29 38 43 56 н S 17 IO 22 35 38 I II I II 13 el 6 6 or 00 00 6 6 6 6 6 6 OI OI OI II h. 00 00 OI 01 OI 61 43 46 16 19 - 4 49 12 43 S 54 35 43 33 191 20 38 42 58 5 58 IS 17 31 -Decl. + 58 + 55 + 54 + 59 +40 LI-+ 29 + 42 00 + 58 6 -6 -+40 6 21 32.0 + 6° LI -+41 + 59 21 35.5 +56 + 57 - I4 - 28 +61 0 + 43.6 8.4I 6.6 21 48'I 22 0.3 Aug.-Nov. 22 42'0 22 46'9 22 59'3 7.81 E2 23 20.4 23 43'0 23 43'2 21 40'0 21 54.8 21 56'2 22 IO'8 22 20.3 22 24.9 7.75 22 23 55.5 0.6 12 23 4.7 R.A. in in 1 þ. 22 23 23 Aug.-Nov. Aug.--Nov. Aug.-Nov. Aug.-Dec. Aug.-Dec. une-Dec. -Nov. Aug.-Dec. Aug.-Feb. Aug.-Feb. uly-Nov. Iulv-Nov. une-Dec. une-Dec. une-Dec. [une-Dec. Aug.-Feb. Aug.-Dec. Aug.-Feb. Aug.-Feb. [uly-Dec. uly-Dec. Visible Oct. 1 Aug. • . • . 'Garnet' star in Cepheus, Red star in Andromeda Nebula in Andromeda . Pair in Cassiopeia . (2) Pretty little pair 6' south. not well determined. Sidereal time at 9 P.M. Cluster in Cepheus NAME OF OBJECT Cluster in Lacerta 29 Aquarii 4 . Pair in Cepheus P. xxii. 219 Aquarii • P. xxiii. 69 Aquarii P. xxi. 248 Cephei 6 Cassiopeise * Aquarii . ↓' Aquarii . • 2 Cassiopeiæ Sculptoris 15 Lacertae . 83, 84 Aquarii § Equulei * Aquarii Aquarii 3 Pegasi S Cephei µ Pegasi 64 23 -\$

OCTOBER (Mean Time of Transit at Greenwich).

OCTOBER

NOVEMBER (Mean Time of Transit at Greenwich).

	A Contractor					
COLOURS AND REMARKS	Fine group. Vellow, deep blue. Both whitish yellow. Both white.	Orange, purple. Both white. Planetary, pale blue (r). Both white (2). White, deep yellow (3).	Both white. Deep yellow, white. White, blue. Very fine ruby. Loose cluster, 10' diam.	White, blue. Bluish white, ashy blue (4). About 50 stars in field. Golden, blue (5). Deep yellow, turquoise.	White, red (6). Reddish white, deep blue. Both whitish yellow (γ) . Red orange. Golden, ashy.	 (5) Rectilinear motion. (6) Common proper motion : a third star, & 5 mag. blue, at 329° : 63",6, is fixed in space. (7) Binary : cf. September list.
Mag.	9-10'5 6'1, 8'4 5'6, 6'0 6'0, 7'0	6'3, 7'9 6'5, 6'5 7'4, 8'0 6'1, 6'9	7.2, 777 6'0, 6'1 7'8 9'5-11'5	6'2, 9'0 4'9, 6'6 8'5-10'5 6'5, 9'1 5'5, 8'0	6'1, 8'7 6'6, 7'4 4'1, 4'2 4'7 6'2, 8'5	star, 8°5 m
Posit. Angles	。	226 226 225 190	331 26 330	185 283 283 355 348	180 95 329 1	a third st.
Dis- tances	15.65 <u>.</u>	2.0 2.5 8.0 134.2	2'9 180'1 64'3 	20.8 6.5 10.5 28'9	2.1 4.2 3.3 2.8	on. motion ; ember li
30	h. m. 1 39 3 41 3 52 3 55 4 4	4 19 4 20 4 24 4 29	4 4 5 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 11 5 22 5 23 5 31 5 33	5 40 5 40 5 45 5 47 6 0	 (5) Rectilinear motion. (6) Common proper motion : a space. (7) Binary : cf. September list.
21	h. m. 1 3 4 17 4 28 4 28 4 31 4 39	4 4 4 4 4 8 4 5 5 5 5 5 5 5 5 4 4 8 4 8	5 25 5 30 5 34 5 35 5 36 5 41	5 46 5 58 6 6 8 6 8 6	6 16 6 16 6 20 6 22 6 36	5) Rectili 6) Commo 57) Binary
:	h. m. 0 24 4 56 5 7 5 10 5 19	5 27 5 33 5 35 5 39 5 43	6 4 6 9 6 14 6 15 6 20	6 25 6 37 6 37 6 46 6 46	6 55 6 55 7 0 7 1 7 15	
-	h. m. 5 35 5 46 5 46 5 49 5 58 5 58	6 6 6 13 6 14 6 18 6 23	6 44 6 48 6 53 6 55 6 59	7 5 7 16 7 17 7 27 7 27	7 34 7 34 7 39 7 41 7 55	
Decl.	° ' +40 21 +32 7 +31 9 -18 37	+ 4 6 + 6 44 - 11 49 + 33 40 + 47 4	27.7 +20 13 32.2 +66 15 37.0 +40 17 38.6 +37 30 43.2 +65 17	- 3 51 +64 4 +45 56 +16 38 +72 44	+20 I7 +66 8 - 0 36 +47 7 +38 53	
R.A.	h. m. 20 19'0 20 30'2 20 33'0 20 41'9	20 50'0 20 50'6 20 57'9 21 2'1 21 6'5	21 277 21 322 21 322 21 370 21 432	21 48'7 22 0'4 22 0'8 22 8'9 22 10'8	22 18'2 22 18'4 22 23'0 22 24'8 22 38'6	ii.
Visible	June–Nov. June–Nov. July–Nov. July–Nov.	July–Nov. July–Nov. July–Nov. July–Nov. July–Dec.	July–Nov. July–Mar. July–Dec. July–Dec. July–Mar.	July–Nov. July–Mar. July–Dec. July–Dec.	July—Dec. July—Mar. Aug.—Dec. July—Dec. July—Dec.	ike a planet. 3 ^m 51 ^a f. 63 Cygni.
NAME OF OBJECT	Sidereal time at 9 P.M. Cluster in Oygnus Pair in Cygnus 48 P. xx. 243 Cygni	P. xx. 376 Equulei * A Equulei Nebula in Aquarius . Pair in Cygnus	Pair in Pegasus Pair in Cepheus 76 Cygni	 coo Aquarii (Bode) cophei Cluster in Lacerta P. xxii, 33 Pegasi* Pair in Cepheus 	33 Pegasi*	 (1) 25" by 17". Bears magnifying like a planet. (2) Rectilinear motion. (3) 6'1 is a close and unequal pair. 3^m 51" f 63 (4) Probably slow binary.

NOVEMBER

COLOURS AND REMARKS	White, deep blue. Yellowish white, rosy. Deep yellow, deep blue (r). Red, ashy blue. Whitish blue, yellow. Yellow, ashy yellow. Greenish white, blue. Round disc, 75' diam. White, bluish (3).	Large and straggling. Yellow, turquoise. The 'Queen of the Nebulæ' (4). 40' by 6', cream colour. Yellow, olive blue (5).	White, ashy blue. White, pale lilac. White, bluish white (6). White, red. Yellow, blue.	White, blue (7), Both white (8). Golden blue (8). Yellow, blue. Whitish yellow, ash (8).	Another pair in field <i>w.ø.</i> 7°0, 10°1 : 340° :
Mag.	6.6, 7.8 6.7, 7.7 5.0, 7.2 6.7, 8'9 6.7, 8'9 6.3, 7'0 4.8, 7'1 4.8, 7'1	8-11 5'2, 8'2 - 6'9, 8'0	6'0, 7'0 6'1, 6'8 5'5, 7'5 6'2, 8'0 6'0, 7'5	6'5, 7'2 4'0, 4'2 5'1, 6'7 6'7, 7'5 3'4, 7'1	
Posit. Angles	° 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	193 	192 83 331 350 99	220 179 78 210 290	ot binar gh spac let. ': 20''.3
Dis- tances	22.0 13.6 13.6 13.6 75.8 18.7 2.9 64.0	6.4 	7.7 32.8 49.5 52.5 69.5	1.9 8.8 3.6 14'1 2.8	obably n er throu llow, vio at 179°
30	h. m. 1 39 6 24 6 24 6 27 6 23 6 40 6 40 7 15 7 15 7 15	7 42 7 55 7 58 8 4 8 15	8 15 8 21 8 30 8 35 8 35 8 44	9 3 9 27 9 32 9 32	 (a) Moving, but probably not binary. (b) Moving, together through space. 20⁽²⁾, Yellow, violet. (c) A blue 87, mag. at 179⁽²⁾; 20⁽ⁿ3). (b) Cf. January list.
21	h. m. 1 33 6 59 7 10 7 16 7 16 7 16 7 22 8 15 8 11	8 18 8 31 8 33 8 39 8 39 8 50	8 50 8 57 9 6 9 10 9 19	9 39 9 44 10 2 10 7 10 34	(5) Movii (6) Movii (7) A blu (8) Cf. Jz
#	h. m. 0 24 7 39 7 41 7 50 7 55 7 55 8 23 8 30 8 30 8 30 8 30	8 57 9 10 9 18 9 30	9 30 9 36 9 45 9 49 9 59	IO 18 IO 23 IO 42 IO 47 IO 47 II 13	
H	h. m. 23 44 8 18 8 21 8 29 8 34 8 40 8 40 9 30 9 13	9 36 9 49 9 52 9 58 10 9	IO 15 IO 15 IO 24 IO 29 IO 38	IO 58 II 3 II 21 II 26 II 53	other con
Decl.	• + + + + + + + + + + + + + + + + + + +	+ 70 + 20 + 40 + 25 + 0 + 0	. + 44 6 + 44 18 - 8 13 + 64 4 + 7 22	+47 20 +18 14 +29 46 +28 13 + 2 45	several
R.A.	h. m. - m. m. - m. m. - m. - m. - m. - m.	0 20'7 0 33'9 0 36'2 0 42'0 0 53'5	o 53'6 o 59'9 I 8'7 I 13'3 I 22'4	I 42'I I 47'2 2 5'7 2 10'8 2 37'4	there are
Visible	Aug. – Jan. Aug. – Jan. Aug. – Feb. Sep. – Dec. Sep. – Jan. Aug. – Feb. Sep. – Jan. Aug. – Feb.	– Sep.–Jan. Aug.–Feb. Nov. Sep.–Feb.	Aug.—Feb. Sep.—Feb. Sep.—Feb. July—Mar. Oct.—Feb.	AugMar. OctMar. OctMar. OctMar. OctFeb.	close pair, and
NAME OF OBJECT	P. xxii, 306 Pegasi . Pair in Andromeda. . 94 Aquarti . 101 Pair in Pisces . 102 Pair in Pisces . 103 Pair in Pisces . 104 Pair in Pisces . 105 Pair in Pisces . 106 Pair in Pisces . 107 Pair in Pisces . 108 Pair in Pisces .	Cluster in Cassiopeia . 55 Piscium	Pair in Andromeda . 77 Piscium . . 37 Ceti P. i. 39-40 Cassiop. P. i. 85-87 Piscium .	Pair in Andromeda.	 Moving together through space. Each of the stars is itself a close pair, and there are several other com- (a) Rapid rectinear motion. (a) Reapid rectinear motion. (b) See January and February lists.

NOVEMBER (Mean Time of Transit at Greenwicn).

NOVEMBER

DECEMBER (Mean Time of Transit at Greenwich).

-4		-	÷.,											1		100			-						
	COLOURS AND REMARKS	1	Both yellow.	Scattered. Fine orange red	White, bluish white.	Stars large.	Both yellow (I).	Bluish white, purplish (2).		Surrounded by fine fields.	Reddish gold, blue.	White, blue,	Fine cluster.	a citow, decper yenow.	Both whitish yellow.	White, lilac.	Doon greenish yellow (3).	White, blue.	Green, red.	White, elliptical (5).	Fine red.	White, olive blue.	Green, ashy green (6).	(4) Å 9°9 mag. at 33,0° : 138"/4, (5) Double nebula, the s. A. a little the brighter.	
1	Mag.	1	0.6 '0.9	2.9	0.6 '0.9	6-2	6'0, 6'4	2'0, 10'4	5.3, 8.3	4.3	9.8 . 2.9	4'2, 8'0	5.6-5.9	01.60	6'I, 6'4	6.2, 9.0	47.49	0.8 '2.9	2.2 . 5.9	1	0.2	4.2, 7.0	4'1, 5'4	138"'4. s. p. a little	
Posit		°	305		197	ł	206	273	85	I	312	173	1	54	298	252	001	249	75	1	1	46	323	at 234°	DW DIIIA
Dis-	tances	=	6.84		42.4	١	3.0	0.14	26.3	1	L.11	36.3	1.4	404	4.4	0.91	30.0	9.6I	24.2	1	I	6.28	0.8	9 mag.	uabiy si
	31	h. m. 3 41		4 49 7 0		5 13	5 13	5 22	5 45	5 46		5 50	5 50	0	6 3	6 I8	61 0	6 26	6 49		1 7		7 I6	(4) A 9' (5) Dou	(0) FT0
	21	h. m. 3 I	5 13	5 28		5 52	5 53	5 50 6 2	6 24	6 26			0 30			6 57	0 50		7 29		7 46		7 55		
		h. m. 2 22	5 53	0 x		6 31		6 41	7 4	7 5	1 1		7 15		7 22	7 36	7 38		8	8 I3		8 30			-
	-	h. m. I 42	6 32	0 47 6 58		7 11		7 20	7 43	7 44		7 48		1 50	8 I	8 15	8 17	8 24	8 47	8 53	9 5	6 6	9 I4		
	Decl.	。 	+ 48	+ 72 18	+ 50	+ 59		+ 28 28	+32 57	+62 18	+36 12	+ 33	10+	430 TA	+20	0 +	+20 51	+ 31	+ 58 3	+ 60	+ 69 38	+23 2	+ 2 13		
	R.A.	н. п.	14.2	23 20.6	23 47.8	6.23 22.6	23 53.6	23 50 7	0 25.4	5.92 0	0.62 0	2.08 0	8.96 0	0 40 2	0 43.7		0 59.5	4.9	1 29'8	I.32.I	I 47'4	9.15 I	1.95 I	'n.	
	Visible	1	AugFeb.	OctTan.	AugFeb.	AugMar.		AugFeb.	AugFeb.	July-Mar.	AugFeb.	AugFeb.	July-Mar.	Augren.	SeptFeb.	SeptFeb.	Sept Feb.	AugFeb.	July-Mar.	July-Mar.	1	OctMar.	Oct Feb.	oper motion of	1 : 90 2.
	NAME OF OBJECT	Sidereal time at 9 P.M.	P. xxiii. 51 Androm.	Cluster in Cepheus	P. xxiii. 223 Cassiop.	Cluster in Cassiop.	Pair in Andromeda.	a Andromedæ*.	Pair in Andromeda.	k Cassiopeiæ	Pair in Andromeda.	# Andromedæ	D 6 Androw	· · · · · · · · · · · · · · · · · · ·	65 Piscium	26 Ceti	# Fiscium	Pair in Pisces	Pair in Cassiop.	Nebula in Perseus .	Red star in Cassiop.		a Piscium	 (1) In slow movement. (2) Change, owning to proper motion of a. 	(3) A 10 mag. star in 12

DECEMBER

					Key Strange	
COLOURS AND REMARKS	Round, bluish white, 80" diam. Vellowish white, red purple. Whitish yellow, ashy green. Reddish yellow, blue.	White, ashy blue. Yellowish white, blue. Both white (1). Not very rich. Orange, bluish white (2).	Yellow, blue White, blue. Planetary, light blue (3). Deep yellow, turquoise. Orange, blue (4).	Yellow, whitish blue. Yellow, deep blue. Yellow, white. White, lilac (5). Pale ruby.	White, reddish blue. White, ash. Deep yellow, deep blue. White, sky blue (6). The Gt. Neb. and Trapezium (7).	"Circumsitæ nebulæ descriptio ' res Deo
Mag.		6'3, 7'5 6'0, 7'5 6'1, 6'7 8-9 5'6, 9'0	6'7, 8'2 6'0, 8'5 5'5, 8'7 4'0, 9'7	3.6, 9.2 6.2, 7.7 5.5, 6.5 6.0, 7.5	5'8, 8'0 5'2, 7'7 6'3, 7'8 6'3, 7'8	
Posit. Angles	85 85 85	162 242 270 56	285 222 - 151 106	233 36 199 74	27 358 346 346 143	l. ary list
Dis- tances	28 Ó 12 28 Ó 8 8	6'9 20'3 11'3 26'2	19.2 3.8 6.5 81.0	76.8 14.5 113.7 63.8	11.8 2.4 31.2 6.0	d Februa A Februa (Arrest).
31	h. m. 3 41 7 41 7 53 8 12 8 12	8 41 8 44 8 44 8 45 8 45 8 54	9 13 9 20 9 28 9 28 9 28	9 38 9 41 9 44 10 10 10 18	IO 21 IO 27 IO 37 IO 37 IO 49	nag. n. p. 11' south nuary and roba, "(c
21	h. m. 3 I 8 21 8 33 8 51 8 53	9 20 9 23 9 24 9 33	9 52 10 0 10 7 10 7 10 8	10 17 10 20 10 24 10 49 10 58	II I II 6 II 16 II 16 II 28	 (5) Å o'5 mag. n. j. (6) 8^m ⁴ ²/₂, 1^r south of Rigel. (7) See January and Pehrnary lists. improba," (d'Arrest).
1	h. m. 2 22 9 0 9 12 9 31 9 32	9 59 10 2 10 2 10 3 10 12	IO 32 IO 39 IO 47 IO 47 IO 48	IO 57 IO 59 II 3 II 28 II 37	111 40 111 46 111 55 111 55 112 7	
н	h. m. 1 42 9 39 9 51 10 10 10 12	IO 39 IO 41 IO 42 IO 43 IO 52	II II II 18 II 26 II 26 II 27	11 36 11 36 11 42 12 8 12 16	112 19 112 25 112 34 112 35 112 47	(?). Both y system
Decl.	- 1 39 + 26 35 + 31 54 + 31 58	+20 4 +58 23 +27 11 +51 2 + 4 46	+ 38 21 + 14 51 - 13 1 - 10 32 - 7 49	+ 17 39 + 30 7 + 42 49 - 5 21 + 1 1	+27 54 -13 5 +34 45 - 8 32 - 5 28	200 years 1 a ternal 0ut 1,000
R.A.	h. m. 2 21'8 2 34'0 2 52'7 2 54'5	3 21.4 3 24.3 3 24.3 3 24.4 3 24.4 3 24.4 3 24.4	3 54°0 4 1°2 4 9°0 4 9°0 4 10°0	4 18.8 4 21.6 4 25.4 4 50.8 4 59.5	5 2.5 5 17'6 5 17'6 5 29'7	white. eriodabout , and forn ystem is ab
Visible	– Oct.—Feb. Oct.—Mar. Sep.—Mar. Oct.—Mar.	NovMar. OctMar. NovMar. SepMar. NovMar.	Nov.—Mar. Nov.—Mar. Dcc.—Feb. Dec.—Feb. Dec.—Feb.	NovMar. NovMar. OctApr. DecFeb.	Nov.—Apr. Dec.—Mar. Oct.—Apr. Dec.—Mar. Dec.—Mar.	.4. 233° : 44" τ, ones s. β. , binary, with pr per motion as o ³ om the solar s; n.
NAME OF OBJECT	Sidereal time at 9 P.M. Nebula in Cetus	Pair in Taurus. Pair in Camelopardus Pair in Taurus. Cluster in Perseus . Pair in Taurus.	Pair in Perseus Pair in Taurus. Nebula in Eridanus 39 Eridani *	 8 Tauri 8 Tauri 9 Pair in Taurus 57 Persei 62 Eridani 8 Red star in Orion 	Pair in Auriga	 (1) Fine field; a pair ro' m, jr, 6'0, 7'4: 233°: 44"'1, white. (2) A 04 mag. in 30°: 37", 7", 7" (3) Several stars in field, two 7 mag. ones . jr, (3) Several stars in field, two 7 mag. ones . jr, (4) 9'1 sa difficult close unequal pair, binary, with periodabout zoo years (?). Both stars have the same large proper motion as o', and form a ternary system. The distance of o' Eridani from the solar system is about 1,000,000 times that of the Earth from the Sun.

DECEMBER (Mean Time of Transit at Greenwich).

DECEMBER

CIRCUMPOLAR OBJECTS.

NAMI	е оғ Овјест		R.A.	Decl.	Dis- tances	Posit. Angles	Mags.	COLOURS AND REMARKS
D · · /	A .		h. m.	0 /	"	0		
	Cepheus	•	0 7.7	+75 24	77'I	102	6.4 2.1	Yellow, whitish yellow.
	in Cepheu		0 33'9			-	9-11'5	Very large, 150-200 stars.
	Min. (Pola	ris).	I 17'0		18.3	214	2'0, 8'4	
	Cepheus	•		+75 39	3'2	247	7'0, 7'7	Both white.
Pair in	Cassiopei	а.	1 52'9	+73 17	5.6	191	6.0' 8.0	White, blue.
47 Cassie			I 53'7	+76 44	95°1	¹ 196	4'7, 9'2	White, blue.
	Cepheus		1 59'7	+79 9	55'8	275	6.1, 6.8	Both white.
	Cephei*,		2 50'9	+78 57	4'5	230	5'4, 9'4	Golden, blue.
	Camelopa		5 3'5	+79 6	17.6	5	4.8, 8.3	Light yellow, blue (2).
Pair in	Camelopa	irdus	6 48.7	+75 24	12.0	28	7'0, 8'0	Yellow, deep blue.
Red st	ar in Camel	lop	7 7'1	+ 82 38	_	_	5'5	Light red.
Pair in	Camelopa	rdus			43'9	86	57, 92	Yellow, blue,
Nebula	in Camelo	pp		+ 78 39	-	-		Pretty bright, long.
Pair in	Ursa Maj		9 27 0		4'9	134	6.8, 7'I	Both white,
Red sta	ar in Camel	lop	11 54'4	1.00	-		6.2	Fine orange.
	Second Second			1	1.10	3,50,000		
Pair in	Camelopa	rdus	12 5.8	+82 21	65'1	76	6.0' 8.0	Orange, deep blue.
	Camelopa				14'3	218	6.0, 7.0	Both white.
	Camelopa	irdus		+84 3	21.8	327	4'5, 5'0	Whitish yel., bluish white.
π ¹ Ursæ		•	15 36.1	+80 52	30.6	82	6.1, 2.0	Yellow, bluish white (3).
∉ Draco	nis	•	17 44.0	+72 12	30'9	15	4'1, 5'2	Yellow, lilac (4).
40, 41 Dr	aconis .		18 8.6	+79 59	20'3	235	5'4, 5'8	Both yellow (5).
Pair in	Draco .		18 57'4	+75 38	5'7	219	6.5, 7.2	Both white.
Red sta	ar in Draco		19 25.6	+76 20	-	-	6.5	Fine red. Var.?
к Cephe	i		20 12'7	+77 22	7.4	123	4'5, 8'1	White, violet.
Pair in	Cepheus		22 2'4	+82 19	13.6	75	6.1, 6.9	Yellow, bluish yellow.

with the Dorpat refractor of 9'6-in. aperture, February 9, 1826. Distance of Polaris two million two hundred and seventy thousand times greater than that of the Earth from the Sun.

(3) Moving together through space.
(4) Moving together through space.
(5) A 7 mag., lilac, in field, about 3¹/₂'s. f.

DAILY ACCELERATION OF SIDEREAL ON MEAN TIME.

4	12	0 47	23		-											
		0 47	23				1.1.1							-		
8			-5	1 30	34	2 14	44	2 53	54	3 32	64	4 12	74	4 51	84	5 30
	13	0 51	24	I 34	35	2 18	45	2 57	55	3 36	65	4 16	75	4 55	85	5 34
12	14	0 55	25	1 38	36	2 22	46	3 I.	56	3 40	66	4 19	76	4 59	86	5 38
16	15	0 59	26	1 42	37	2 25	47	3 5	57	3 44	67	4 23	77	5 3	87	5 42
20	16	I 3	27	1 46	38	2 29	48	3 9	58	3 48	68	4 27	78	5 7	88	5 46
24	17	I 7	28	I 50	39	2 33	49	3 13	59	3 52	69	4 31	79	5 11	89	5 50
28	18	III	29	I 54	40	2 37	50	3 17	60	3 56	70	4 35	80	5 15	90	5 54
31	19	I 15	30	I 58	41	2 41	51	3 21	61	4 0	71	4 39	81	5 18	GI	5 58
35	20	I 19	31	2 2	42	2 45	52	3 24	62	4 4	72	4 43	82	5 22	92	6 2
39	21	1 23	32	26	43	2 49	53	3 28	63	4 8	73	4 47	83	5 26	93	6 6
43	22	1 26	33	2 10			2							1		
	16 20 24 28 31 35 39	16 15 20 16 24 17 28 18 31 19 35 20 39 21	16 15 0 59 20 16 1 3 24 17 1 7 28 18 1 11 31 19 1 15 35 20 1 19 39 21 1 23	16 15 0 59 26 20 16 1 3 27 24 17 1 7 28 28 18 1 11 29 31 19 1 15 30 35 20 1 19 31 39 21 1 23 32	16 15 0 59 26 1 42 20 16 1 3 27 1 46 24 17 1 7 28 1 50 28 18 1 11 29 1 54 31 19 1 15 30 1 58 35 20 1 19 31 2 2 39 21 1 23 32 2 6	12 14 0 55 25 1 38 36 16 15 0 59 26 1 42 37 20 16 1 3 27 1 46 38 24 17 1 7 28 1 50 39 28 18 1 1 29 1 54 40 31 19 1 15 30 1 58 41 35 20 1 19 31 2 2 42 39 21 1 23 32 2 6 43	12 14 0 55 25 1 38 36 2 22 16 15 0 59 26 1 42 37 2 25 20 16 1 3 27 1 46 38 2 29 24 17 1 7 28 1 50 39 2 33 28 18 1 1 29 1 54 40 2 37 31 19 1 15 30 1 58 41 2 41 35 20 1 19 31 2 2 42 2 45 39 21 1 23 32 2 6 43 2 49	12 14 0 55 25 I 38 36 2 22 46 16 15 0 59 26 I 42 37 2 25 47 20 16 I 3 27 I 46 38 2 29 48 24 17 I 7 28 I 50 39 2 33 49 28 18 I 11 29 I 54 40 2 37 50 31 19 I 15 30 I 58 41 2 41 51 35 20 I 19 31 2 2 42 2 45 52 39 21 I 23 32 2 6 43 2 49 53	12 14 0 55 25 1 38 36 2 22 46 3 1 16 15 0 59 26 1 42 37 2 25 47 3 5 20 16 1 3 27 1 46 38 2 29 48 3 9 24 17 1 7 28 1 50 39 2 33 49 3 13 28 18 1 1 29 1 54 40 2 37 50 3 17 31 19 1 15 30 1 58 41 2 41 51 3 21 35 20 1 19 31 2 2 42 2 45 52 3 24 37 50 1 12 2 42 2 45 52 3 24 37 20 1 123	12 14 0 55 25 I 38 36 2 22 46 3 I 56 16 15 0 59 26 I 42 37 2 25 47 3 5 57 20 16 I 3 27 I 46 38 2 29 48 3 9 58 24 17 I 7 28 I 50 39 2 33 49 3 13 59 28 18 I I 29 I 54 40 2 37 50 3 17 60 31 19 I 53 41 2 41 51 3 21 61 35 20 I 19 31 2 2 2 2 55 3 3 28 63 37 50 11 9 31 2 2 2 45 52 3 2 <t< td=""><td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 52 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 31 I9 I 53 41 2 41 51 3 21 61 4 0 37 20 I 19 31 2 2 2 245 52 3 24 62 4 4 <t< td=""><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 24 17 1 7 28 150 39 2 33 49 3 13 59 3 52 69 28 18 1 129 1 54 40 2 37 50 3 17 60 3 56 70 31 19 1 158 41 2 151 3 21 61 40 71 35 20 1 19 31 2 2 242 245 52 32 24 62<!--</td--><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 56 69 4 31 28 18 1 12 1 54 40 2 37 50 3 17 60 3 56 70 4 39 31 19 1 15 80 1 2 1 51 3 21 61 4 71 4</td><td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 I9 76 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 68 4 27 78 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 48 68 4 27 78 24 17 I 7 28 150 39 2 33 49 3 13 59 3 26 69 4 31 79 28 18 I 12 247 50 3 17 60 3</td><td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 19 76 4 59 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 26 69 4 31 79 5 11 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 70 4 39 81 5 18</td><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 76 4 59 86 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 87 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 88 24 17 1 7 28 15 39 23 49 3 13 59 3 26 43 17 70 51 89 28 18 1 129 1 54 40 2 37 50 3 17 6 3 50 70 4 35 80 515 90 31</td></td></t<></td></t<>	12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 52 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 31 I9 I 53 41 2 41 51 3 21 61 4 0 37 20 I 19 31 2 2 2 245 52 3 24 62 4 4 <t< td=""><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 24 17 1 7 28 150 39 2 33 49 3 13 59 3 52 69 28 18 1 129 1 54 40 2 37 50 3 17 60 3 56 70 31 19 1 158 41 2 151 3 21 61 40 71 35 20 1 19 31 2 2 242 245 52 32 24 62<!--</td--><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 56 69 4 31 28 18 1 12 1 54 40 2 37 50 3 17 60 3 56 70 4 39 31 19 1 15 80 1 2 1 51 3 21 61 4 71 4</td><td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 I9 76 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 68 4 27 78 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 48 68 4 27 78 24 17 I 7 28 150 39 2 33 49 3 13 59 3 26 69 4 31 79 28 18 I 12 247 50 3 17 60 3</td><td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 19 76 4 59 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 26 69 4 31 79 5 11 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 70 4 39 81 5 18</td><td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 76 4 59 86 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 87 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 88 24 17 1 7 28 15 39 23 49 3 13 59 3 26 43 17 70 51 89 28 18 1 129 1 54 40 2 37 50 3 17 6 3 50 70 4 35 80 515 90 31</td></td></t<>	12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 24 17 1 7 28 150 39 2 33 49 3 13 59 3 52 69 28 18 1 129 1 54 40 2 37 50 3 17 60 3 56 70 31 19 1 158 41 2 151 3 21 61 40 71 35 20 1 19 31 2 2 242 245 52 32 24 62 </td <td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 56 69 4 31 28 18 1 12 1 54 40 2 37 50 3 17 60 3 56 70 4 39 31 19 1 15 80 1 2 1 51 3 21 61 4 71 4</td> <td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 I9 76 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 68 4 27 78 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 48 68 4 27 78 24 17 I 7 28 150 39 2 33 49 3 13 59 3 26 69 4 31 79 28 18 I 12 247 50 3 17 60 3</td> <td>12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 19 76 4 59 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 26 69 4 31 79 5 11 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 70 4 39 81 5 18</td> <td>12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 76 4 59 86 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 87 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 88 24 17 1 7 28 15 39 23 49 3 13 59 3 26 43 17 70 51 89 28 18 1 129 1 54 40 2 37 50 3 17 6 3 50 70 4 35 80 515 90 31</td>	12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 56 69 4 31 28 18 1 12 1 54 40 2 37 50 3 17 60 3 56 70 4 39 31 19 1 15 80 1 2 1 51 3 21 61 4 71 4	12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 I9 76 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 20 16 I 3 27 I 46 38 2 29 48 3 9 58 3 48 68 4 27 78 24 17 I 7 28 I 50 39 2 33 49 3 13 59 3 48 68 4 27 78 24 17 I 7 28 150 39 2 33 49 3 13 59 3 26 69 4 31 79 28 18 I 12 247 50 3 17 60 3	12 14 0 55 25 I 38 36 2 22 46 3 I 56 3 40 66 4 19 76 4 59 16 15 0 59 26 I 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 24 17 1 7 28 1 50 39 2 33 49 3 13 59 3 26 69 4 31 79 5 11 28 18 I II 29 I 54 40 2 37 50 3 17 60 3 56 70 4 39 81 5 18	12 14 0 55 25 1 38 36 2 22 46 3 1 56 3 40 66 4 19 76 4 59 86 16 15 0 59 26 1 42 37 2 25 47 3 5 57 3 44 67 4 23 77 5 3 87 20 16 1 3 27 1 46 38 2 29 48 3 9 58 3 48 68 4 27 78 5 7 88 24 17 1 7 28 15 39 23 49 3 13 59 3 26 43 17 70 51 89 28 18 1 129 1 54 40 2 37 50 3 17 6 3 50 70 4 35 80 515 90 31

OBJECTS SUITABLE FOR FOUR TO SEVEN-INCH TELESCOPES.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
34 Piscium	DecFeb.	h. m. 0 4'2	+ 10 31	7.8	160	5'9, 10'2
26 Andromedæ	Aug.—Feb.	0 12'7	+43 9	5'9	240	6'0, 10'1
42 Piscium	Dec.—Feb.	0 16'5	+ 12 51	29'7	338	6.6, 11.0
12 Ceti	Dec.—Feb.	0 24'2		8.6	187	6'0, 10'9
	Oct.—Feb.		- 4 35	0'75*		6.7, 8.2
P. O. 245 Piscium	Octreb.	0 52.3	+20 47	075	93 .	07, 02
P. i. 11 Piscium	SeptFeb.	I 6.7	+ 29 28	10.6	258	6.0, 10.0
• Piscium	OctFeb.	1 7'5	+ 23 59	7.7	227	5'2, 10'0
42 Ceti (1)	DecFeb.	1 14'0	- 1 6	1.45	355	6.7, 7.5
4 Cassiopeiæ (2)	AugFeb.	I 17'9	+ 67 32	28.7	107	4'5, 9'7
P. i. 123 Piscium (3)	NovFeb.	1 30'1	+ 7 4	1.33	33	7'2, 7'4
1 123 x iboram (3/	1.01. 1.05.	1 30 1		- 55	55	/~, /4
103 Piscium (4)	NovFeb.	1 33.1	+16 3	1.31	297	6.9, 9.0
e Trianguli	NovFeb.	I 56'3	+ 32 44	4'0	118	5.6, 10.8
48 Cassiopeiæ	July-Mar.	1 52.6	+70 21	0.96	267	5'0, 7'0
10 Arietis (5)	NovFeb.	1 57'1	+25 23	1'04	50	5.8, 8.0
P. ii. 96 Arietis	NovMar.	2 23.9	+ 24 44	12'1	182	6.3, 10.7
v Ceti	DecMar.	2 29.9	+ 5 6	7.8	84	5'0, 9'9
Pair in Cetus	Dec Mar.	2 35'0	+ 4 24	1.71	295	7'0, 8'9
84 Ceti (5)	Dec Mar.	2 35.4	- I 10	4.7	324	5.8, 9.6
θ Persei (6)	SeptMar.		+ 48 45	47	200	4'2, 9'8
Pair in Perseus.	OctMar.	2 40'1	+ 35 6		161	6.3, 8.7
I an miterseus	OctMai.	2 40 1	T 35 0	1.23	1015	03, 07
π Arietis	DecMar.	2 42'9	+17 0	3.3, 25.2	122, 109	5'5, 8'2, 11'0
41 Arietis	DecMar.	2 43'4	+ 26 48	21'2, 34'0	266, 204	4'1, 11'3, 11'0
Pair in Cepheus .		2 50'9	+ 78 58	4.5	230	5'4 9'4
Arietis (7)	DecMar.	2 52.6	+ 20 54	1.39	201	5'4, 6'3
50 Arietis	DecMar.	2 54'1	+ 17 33	2'1	67	7'1, 9'9
o ² Eridani (8).	DecFeb.	2 57'1	- 8 8	2'5	85	5'4, 9'5
Pair in Cassiopeia (9)	AugApr.	3 1'3	+71 7	0.08	213	7'0, 7'0
12 Eridani (10)	DecJan.	3 72	-29 27	2.6	312	4'0, 9'5
7* Eridani (11)	DecJan.	3 14'5	-22 11	5.4	287	50, 95
Pair in Perseus.	Nov.—Mar.	3 14 5	+33 8			6.4, 9.9
- an in 1 or boub	rotmai.	5 1/3	1 33 0	3.9	153	54, 99
 Binary. 9'7 is double, 10'6 : 256° : 3' Slow binary : a 10'0 mag. at (4) n. p., 105 Piscium : in the st (5) Moving together through st 218' : 69''2, not connect of \$Persei. 	71° ; $77''$. ame field. bace.	(8) 9 (9) B (10) S	proper motion.	nag. in 307 ⁰ : 20 a Fornacis. Ver 10 ^{11°} 0 ; a 10°7 at 2 10 ^{11°} 0 ; and a 10°0	y rapid common 203° : $123''^\circ$: a	

* Distances under 2"'o are given in this list to the nearest hundredth of a second of arc.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
	OctMar.	h. m.	0 /	2'2	163	4'9, 8'5
2 (Hevel) Camelopardi	Nov.—Mar.	3 19.8	+ 59 32			49, 05
ζ Persei (I)		0 17	+ 31 32	12.8, 32.6 2.2	208, 287	5'2, 8'2
9 (Hevel) Camelopardi 30 Eridani	OctApr.	3 47 4	+60 46	2·2 8·2	41	
o Eridani Pair in Perseus	DecFeb. NovMar.	3 47'1	- 5 42	8.8	135	6'5, 10'5
Pair in Perseus	Nov.—Mar.	3 49'5	+41 33	0.0	149	07, 97
Pair in Cepheus (2) .	_ •	3 50'9	+80 23	0'96	35	5'7, 7'0
Pair in Perseus	NovMar.	3 52.1	+ 38 29	1.60	329	6.2, 9.7
Pair in Perseus (3) .	NovMar.	3 59'7	+33 9	1,08	204	6.7, 9.0
P. iii. 242 Persei (4) .	NovMar.	4 0'0	+ 37 47	2'7	138	6.8, 9.5
P. iv. 53 Tauri	Nov.—Mar.	4 15'7	+ 20 30	2'I	171	5.6, 8.8
6 Persei	Nov.—Mar.	4 17'2	+ 33 42	4'4	50	5'5, 9'2
2 Camelopardi	NovApr.	4 30'9	+ 53 15	1.62	292	5.8, 7.5
7 Camelopardi (5) .	NovApr.	4 48.2	+ 53 34	1'24, 25'7	309, 239	4.6, 7.9, 11
5 Aurigæ	OctApr.	4 52'5	+ 39 13	2.7	247	6.0, 9.7
4 Orionis	Dec.—Mar.	5 1.6	+ 8 20	1'15	203	5.8, 6.0
6 Aurigæ (6)	Nov Apr.	5 10'7	+ 33 15	4'3	57	5.0, 10.6
Leporis 28	DecFeb.	5 157	-21 22	4'3	283	6'0, 10'5
Pair in Orion	DecMar.	5 18.6	- 0 59	1'43	171	6.5, 6.7
n Oriopis	DecMar.	5 18.7	- 2 30	,1°00	85	4'0, 6'0
ψ^2 Orionis	Dec Mar.	5 20.8	+ 2 59	2.7	324	5.4, 9.0
	D DI					
β Leporis	DecFeb.	5 23.4	-20 51	2'5	285	3.2, 11.0
orionis	Dec.—Mar. Dec.—Mar.	5 23.9	- I II	12.6	88	5.4, 10.5
33 Orionis		5 25.2	+ 3 12	1.76	28	6.0, 7.0
Pair in Taurus	Nov.—Mar.	55	+ 26 52	1.00	178	6.5, 7.0
2 Orionis	Dec.—Mar.	5 29.8	- 4 55	1.23	218	5'2, 8'9
Pair in Camelopardus	NovApr.	5 37.5	+62 46	1'54	23	6.4, 7.3
Pair in Orion	NovMar.	5 41.5	+ 20 50	0.85, 75.6	315, 161	6.2, 8.0, 7.
52 Orionis	DecMar.	5 41'9	+ 6 25	1.01	204	6.1, 6.2
Leporis 61	DecFeb.	5 44 4	-14 31	2.7	179	6.0, 9.4
θ Aurigæ (7)	Nov.—Mar.	5 52.0	+ 37 12	2.4	359	3.0, 8.6
3 Monocerotis	DecMar.	5 56.5	- 10 36	1.62	355	6.0, 9.7
Pair in Auriga	NovMar.		+ 36 17	1'73	277	7'0, 10'0
4 Monocerotis	DecMar.	6 3'1	-11 7	3.2, 9.0	178, 244	6'7, 10'5, 11
Pair in Monoceros .	DecMar.	6 6'1	- 4 38	0.98	170	6.2, 8.7
4 Lyncis	NovMay	6 11 9	+ 59 25	0.92	101	6.2, 7.5
Pair in Camelopardus		6 15'3	+ 70 36	5'5	79	6.0, 10.0
Pair in Monoceros	JanApr.	6 16.1	-11 42	3.8	26	6'2, 9'9
4 Aurigæ	Jan.—Apr.	6 32.4	+ 28 22	0.83	37	6.0, 8.0
5 Monocerotis (8)	Jan.—Apr.	6 34.7	+10 0	3.0, 16.0	211, 13	Var. 8'7, 11
Canis Maj. 29 .	Feb.—Apr.	6 43.8	-15 I	0.97	290	6.0, 8.7

A 9'3 at 198⁰, 89" 1, and a 10'0 at 185°: 119"'5.
 Binary.
 A 12'5 mag. at 119°: 34"'7.
 Rapid common proper motion, in which 50 Persei, 12' distant, joins. Parallax insensible.
 8'7 mag. of a very dusky hue.

(6) A pair with double companion in field, 32^s f. and 10' north of 16.
(7) 8'6 possibly variable. Several faint distant com-panions.
(8) In the midst of a scattered cluster, containing several pairs.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
		h. m.	0 1	"	0	
15 Lyncis (1)	NovMay	6 47 4	+ 58° 35'	0.73	360	5'0, 7'3
λ Geminorum	DecApr.	7 11.2	+ 16 44	9'5	33	3'5, 9'8
P. vii. 52 Canis Minor .	Dec.—Apr.	7 11.2	+ 9 30	1.58	113	7'0, 7'0
30 Canis Maj	JanMar.	7 14'0	-24 45	7.8, 14.3	90, 80	6.0, 10.2, 11.5
P. vii. 116 Monocerotis.	Jan.—Apr.	7 22.5	-11 20	0.80,20.0,23.4	166, 313, 157	6.0,8.2,8.9,10.0
Duin in Comminsi	DecMay	-		0.82		
Pair in Gemini	Dec.—May	7 27 9	+31 12	22'0	332	5'5, 6'5
π Geminorum	Dec.—May	7 40'1	+33 42		212	5'0, 10'8
Pair in Canis Minor.		7 46.7	+ 3 41	1'20	43	7'0, 7'2
Pair in Cancer	DecMay	7 54'2	+23 54	2.7	333	6'1, 10'7
11 Cancri	DecMay	8 1.8	+27 49	3.5	218	6'9, 10'4
Pair in Lynx	DecJune	8 7'0	+43 23	4'2	294	6.7, 10.5
Pair in Argo (2).	FebMay		-19 20	4'3	104	6.5, 10.5
Pyxidis 17	Feb.—May	8 34 2	-22 17	1.37	34	6.0, 9.0
² Cancri	DecMay	8 47'3	+31 1	1.42	328	5.8, 6.2
(Ursæ Maj. (3)	DecJune	8 51.4	+48 29	9.6	-	3'2, 10'2
(Orsæ maj. (3)	Dec.—June	0 51 4	740 29	90	357	3 2, 10 2
σ ² Ursæ Maj. (4)	DecJune	9 0.4	+67 36	2'4	233	5'1, 8'7
37 Lyncis	DecJune	9 12.8	+51 44	5'5	117	6.0' 10.6
« Leonis	DecMay	9 18.0	+26 41	3'4	205	5'0, 10'2
ω Leonis (5)	JanJune	9 22'4	+ 9 33	0.68	100	6.0, 6.4
3 Leonis	JanJune	9 22'4	+ 8 41	25'I	79	6.0, 10.8
Pair in Leo	JanJune	9 32.6	+11 17	8.3	103	6.7, 10.2
Felis 15	MarJune	9 36.2	-17 58	3'I	261	7'2, 11'0
P. x. 23 Leonis	FebJune	10 10'0	+ 18 18	0'76	217	6.5, 7.5
Felis 54	MarJune	10 16.5	-21 58	2'0	189	6.5, 9.0
P. x. 94 Sextantis.	MarJune	10 25.3	- 7 3	2.8	166	6.0, 9.9
Pair in Ursa Maj.	FebJune		+41 42	0.84	. 330	6.5. 7.5
ψ Crateris	AprJune		-17 53	0.42	149	6.2, 6.9
v Ursæ Maj	FebJune			7.0	147	3.8, 9.6
γ Crateris (6)	AprJune		-17 4	5'1	98	4'0, 10'0
Pair in Ursa Maj. (7).	Apr.—Aug.	11 25.8	+61 43	1.36	65	6.3, 7.7
P. xi. 126 Virginis.	MarJune	11 32.6	- 1 48	4'9	279	6'2, 9'7
Pair in Can. Ven.	MarJune		+ 36 5	49	122	6.5, 90
Pair in Can. Ven.	MarJune		+40 32	1 55	338	6.2, 7.0
Pair in Comæ Ber.	MarJune		+ 29 34	8'2	330	6.2, 10.5
P. xii. 104 Corvi	AprJune			1.81		6.2, 10.5
1. XII. 104 001VI	ripi.—June	12 24 2	-12 45	101	354	02, 10.2
Pair in Corvus	AprJune	12 29.8	- 16 12	11'2	258	6.7, 11.2
35 Comæ Ber. (8)	AprJuly	12 47.7	+21 52	1.37, 28.8	68, 125	5.2, 8.0, 9.2
46 Virginis	AprJune	12 54'7	- 2 45	I'44	151	5'4, 9'5
Hydræ 348	AprJune	12 57 6	-19 58	0'71	133	6.2, 6.2
P. xii. 268 Can. Ven	AprJune	13 0'7	+ 29 38	6.5, 40.3	219, 7	6.0, 10.5, 12.5
			1			

Binary.
 Red, blue.
 Very large common proper motion, in which a neighbouring star, ro Ursæ, participates.
 Binary, closing rapidly.

(5) Binary, period about 115 years.
(6) Common proper motion.
(7) Binary, period 94¹/₂ years.
(8) Binary.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
		h. m.	0 11	"	0	
Pair in Can. Ven. (1).	AprJune	13 6.7	+ 32 41	1'41	348	6.3, 6.9
25 Can. Ven. (2)	AprJune	13 32.4	+ 36 52	0.80	151	6.2, 8.2
τ Boötis (3)	AprJune	13 41.8	+18 1	8.9	353	4'1, 11'5
P. xiii. 242 Can. Ven.	AprJune	13 49'3	+30 28	1.81	18	7.0, 9.6
Pair in Boötes	Apr.—June	14 1.8	+ 35 19	14'2	70	6.4, 10.0
P. xiv. 20 Boötis	May-July	14 8.3	+ 12 31	1.95	249	6.6, 9.3
φ Virginis	May-July	14 22'3	- I 43	4'1	112	5'2, 9'4
Pair in Boötes	May-Aug.	14 28.5	+49 41	5.0	131	7'2, 11'0
Pair in Boötes	May-Aug.	14 36.3	+49 11	7.0	102	7'3, 11'0
Libræ 23	May-June	14 42'1	-16 52	1.52	236	70, 80
Pair in Boötes	May-July	14 43'4	+24 50	1.20	55	6.3, 7.4
Pair in Boötes	May-July	14 48'0	+ 16 10	1.49	195	6.2, 7.2
Pair in Bootes	May-July	14 51'3	+ 32 45	4'3	113	6'2, 10'5
Pair in Boötes	May-Aug.	15 10.6	+ 38 44	1.38	257	6.2, 8.2
Pair in Libra (4) .	May-July	15 12.2	-23 51	1.00	180	7.0, 9.0
5 Serpentis (5)	May—July	15 13'4	+ 2 13	10'7	38	4.8, 10.0
Coronæ 1 (6)	May-July	15 13'5	+27 15	1.55	308	5.6, 6.1
6 Serpentis	May-July	15 15'2		2.3	13	4'7, 9'4
n Coronæ Bor. (7) .	May-Aug.	15 18.5		0.65	182	5.7, 6.0
μ ² Boötis (8)	May-Aug.	15 20'3	1	0'78	104	6.5, 7.8
2 Scorpionis	May-June	15 46.7	-25 0	2.6	279	5'5, 9'0
11 Scorpionis	May-July	16 1'3	-12 26	3'3	256	6.1, 10.4
Pair in Cor. Bor.	May-Aug.	16 7'3	+33 38	5'4	262	6.0, 10.2
Pair in Cor. Bor.	May-July	16 8.0	+ 26 58	2.8	136	6.2, 10.7
Pair in Serpens .	May-July	16 16.0	+ 1 26	2.6	I	7'2, 9'9
n Draconis	AprAug.	16 22'4	+61 46	5'2	142	2.8, 9.0
Draconis 99	AprAug.	16 22'3		1.10	2	6'2, 7'4
Pair in Hercules .	May-Aug.	16 23'3		1.26	211	6.6, 7.9
ζ Herculis (9)	May-Aug.	16 37 0		1.65	82	2.6, 7.0
Pair in Hercules .	May-July	16 44.3	+13 27	5'4	39	5'7, 10'3
21 Ophiuchi	June-Aug.	16 45.6	+ 1 25	0.08	162	6.0, 8.0
52 Herculis .	May-Aug.	16 450		1.83	309	5'0, 10'0
P. xvi. 270 Oph	June-Aug.	16 56.5		1.28	157	6.7, 7.9
Herculis 206 (10)	May-Aug.	16 59.8	+ 19 45	1.78	232	6'9, 10'2
P. xvii. 18 Oph	June-Aug.	17 7.5	+ 7 54	1'47	232	6.7, 8.9
P. wiii Onh	Inly Ano	10 1010	77.09			6
P. xvii. 43 Oph	July—Aug. June—Aug.	17 13'2	-17 38	1.74	261	6.2, 7.5
68 Herculis Pair in Hercules .	June-Aug. June-Sept.	17 13'3	+ 33 14	4'4	61	5'1, 10'1
Pair in Hercules . Pair in Taurus Pon.	June-Sept.	17 42'1	+17 44	0'79	298	6.1, 7.8
Pair in Taurus Pon	June-Sept.	17 42'2	+ 39 22	7.6	350	6.7, 10.3
o Hercuits	June-Sept.	17 49.6	+40 3	1.90	122	5'9, 9'4

Binary.
 Binary, period 120 years.
 Large common proper motion.
 A pair in field, 31° Jr, 72, 72 : 329° : 0″*80.
 Large common proper motion.

(6) Magnitudes possibly variable.
(7) Binary, period 41½ years.
(8) Binary, period rather uncertain.
(9) Binary, period 34½ years.
(10) Pair in field, 47° Å., 5' n. 6'9, 11'3 : 228° : 1"'50.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
		h. m.	0 /	"	0	
Pair in Hercules .	June-Oct.	18 4'2	+49 42	2'2	148	6.4, 10.5
Herculis 417 .	June-Sept.	18 5'1	+ 16 27	1.10	236	6.7, 7.8
μ Sagittarii (1)	June-Aug.	18 6.0	-21 5	16.8	258	3'5, 11'0
Pair in Scutum Sob.	June-Aug.	18 157	-15 9	12'4, 1'27	220, 64	7'0, 8'2, 8'5
21 Sagittarii	June-Aug.	18 18.6	-20 36	2'I	293	5'2, 8'0
		STOT !!				5-,
Pair in Lyra	June-Nov.	18 32.4	+ 33 22	7'3	205	5'6, 10'5
Pair in Aquila	July-Oct.	18 33'0	+ 4 15	1.23	289	6.6, 9.5
Lyræ 91	June-Nov.	18 50'7	+ 33 49	1.86, 45.3	134, 350	6.0, 10.0, 7.3
17 Lyræ.	June-Nov.	19 3'1	+ 32 20	37	321	5'5, 9'7
Pair in Lyra	June-Nov.	19 11'3	+27 16	0.83	156	
rair in Lyra	June-1101.	19 11 3	1 2/ 10	003	130	6.6, 7.2
Dain in Curanus	June-Nov.	19 12'3	+49 52	2.3	76	6:0 -011
Pair in Cygnus	-			1.86		6'9, 10'4
2 Vulpeculæ .	July-Nov.	19 12'9			125	5'7, 9'5
P. xix. 108 Drac	FebNov.	19 15.7	+63 0	1.10	337	7'0, 8'1
Pair in Cygnus	July-Dec.	19 39.0		0.85	25	6.5, 7.9
P. xix. 263 Cygni	July-Dec.	19 39'7	+38 3	0.96	196	7'0, 8'0
			1030			
δ Cygni (2)	July-Dec.	19 41.4	+44 50	1.68	318	2.8, 7.5
π Aquilæ	July-Oct.	19 43'4	+11 32	1'43, 31'2	117, 306	6'1, 6'7, 11'0
16 Vulpeculæ	July-Nov.	19 57'2	+24 37	0.69	95	57, 59
Cygni 153	July-Dec.	20 9.3	+51 7	4.0	81	5'9, 10'9
Pair in Cygnus	July-Dec.	20 10'4	+41 45	0'90, 11'8	172, 34	7.0, 7.6, 9.3
	1000	1.2.2				
π Capricorni	July-Sept.	20 20.8	- 18 35	3'3	145	51, 87
Pair in Vulpecula .	AugNov.	20 27'I	+25 24	1.10	78	6.3 7.6
Delphini 43	AugNov.			1.22, 38.7	92, 34	6.4, 8.0, 12.0
13 Delphini	SeptNov.			1.61	186	5'2, 8'9
λ Cygni (3)	AugDec.	20 43.0		0.65, 85.0	80, 105	5'0, 7'0, 8'7
, c) g (3) · · · ·		+3 -	· J- +			30,70,07
60 Cygni.	AugDec.	20 57'2	+15 12	2.7	165	F'F 0'F
Til anna 2 at (.)	AugNov.		+ 9 38	2'2, 41'3	275, 10	5'5, 9'5
P. xxi. 51 Cephei	June-Jan.	21 49		2 2, 41 3 I'I2	2/5, 10	4'3, 10'0, 12'0
	Aug.—Dec.	-			128	5'9, 6.6
P. xxi. 50 Cygni		21 9'9		1.40		6.6, 7.1
τ Cygni (5)	Aug Dec.	21 10.2	+37 33	1.10	116	3.7, 7.8
Divisor	Turne Trees		160			
Pair in Cepheus	June-Jan.	21 11.6	+63 59	0.95	248	66, 69
P. xxi. 166 Cephei .	June-Jan.		+ 59 16	12'2	190	6.2, 11.0
Pair in Cepheus .	June-Jan.	21 52.6		1.42	246	6.0, 8.5
Pair in Pegasus.	SeptDec.		+23 24	2'9	259	6.6' 11.1
15 Cephei	June-Feb.	22 0.6	+ 59 16	10.9	297	6.2, 11.0
			28.2			
Pair in Pegasus.	SeptDec.		+ 7 25	I'20	126	6.0, 7.7
Pair in Cepheus .	-		+69 20	0.84	265	6.5, 7.0
P. xxii. 258 Cephei.			+82 33	3.6	34	5'1, 10'3
Pair in Lacerta.	SeptDec.	22 48.6	+44 9	1'33, 26'4	217, 354	6.0, 8.0, 10.7
Pair in Pegasus	SeptDec.	22 51.2	+11 14	3.6	IO	6.4, 9.1
					1	

A 9'5 at 312° : 48"'3, and another at 115° : 50"'1, a 12'5 mag. at 118° : 25"'2, and an excessively faint star at 180°±25"; discovered by Mr. Common with 37-in. reflector. Good test for large apertures.

(a) Binary, distance constant.
(3) Binary.
(4) 4'3 and ro'o moving together through space.
(5) Binary.

31

.

Objects Suitable for Four to Seven-Inch Telescopes.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
52 Pegasi	SeptDec.	h. m.	+11 7	." I`22	213	6.0, 8.0
π Cephei (1).			+74 46	1.31	27	4'7, 8'7
Pair in Cassiopeia .	AugMar.		+ 56 50	1.24	305	6.9, 9.0
96 Aquarii (2)	OctDec.	00	00	9.9	23	6.2, 11.3
P. xxiii. 101 Cass. (3).	Aug.—Mar.			1.38	345	5.0, 9.4
ω ² Aquarii	Oct Dec.	23 36.8	-15 10	5.7	88	5'0, 11'0
78 Pegasi	SeptJan.	23 38.3		1'46	192	5'0, 8'1
Pair in Pegasus	OctJan.	23 39'7	+ 19 47	1.98	62	6.7, 9.3
Pair in Andromeda .	SeptJan.	23 52'5	+ 34 23	3'4	23	6.4, 9.1
Pair in Andromeda .	SeptJan.	23 58.7	+41 27	5'2	168	6.1' 10.0
Pair in Andromeda . (1) Binary. (2) Common proper motion. (3) An 8'o mag. at 269° : $75'''$ 221° : t'' : 6, with a com) is double, 7°5	, 9'5:		337°: 26″'9. panion at 115°:	The 5 [°] 0 has a 10 43 ^{"*5} , and anothe louble, having a 1	o'i mag. con rat 339°:66'

SHOOTING STARS.

Radiant Points.

	-	Radian	Point	Notes	Radiant Point		
DATE	1	R.A.	Decl.	10123	Rises	Souths	
January 2-3 .		h. m. XV. 30	+ 48	Fine morning shower.*	_	8 39 A.M.	
March 7		XVI. 16	+15	Formerly active.	9 51 P.M.	5 13 A.M.	
April 19-20 .		XVIII. I	+ 33	Lyrids.	6 27 P.M.	4 8 A.M.	
April 29-May 2 .		XXI. 45	- 2	Morning shower. Max., May 2.	I 15 A.M.	7 8 A.M.	
July 30-August 1		II. 8	+ 53	Fine display, 1878.*	-	5 29 A.M.	
August 9-10 .		II. 52	+ 56	Perseids. Very fine annual shower.	-	5 38 A.M.	
September 1 .		XX. 20	+ 54	Large meteors.* [10th max.*	· · · · · · · · · · · · · · · · · · ·	9 36 P.M.	
October 17-20 .		VI. O	+15	Fine annual shower.	8 47 P.M.	4 10 A.M.	
November 13-14		х. о	+23	Magnificent shower in 1866. Leonids.	10 14 P.M.	6 27 A.M.	
November 19-23		IV, 16	+ 20	Long-continued shower.	4 19 P.M.	0 12 A.M.	
November 27 .		I. 40	+43	Andromedes. Fine display 1872-85.*		9 13 P.M.	
December 9-12.		VII. O	+ 32	Geminids. Rich shower.	4 10 P.M.	I 4I A.M.	

* The radiant point of these showers is circumpolar, and never sets.

LIBRARY OF THE UNIVERSITY CALFORNIA

TEST OBJECTS.

Two Inches Aperture.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
DIVIDING TESTS		h. m.	0 /	"	0	
e' Lyræ	June-Nov.	18 40.6		3.15	16'1	4'6, 6'3
¥ 2671	May-Dec.	20 15.6	+ 55 2	2.89	341.2	6.0, 7.2
x 389 · · · ·	Sept Mar.	3 20'9		2'71	66.5	6.4. 7.6
P. xvii. 300	June-Sept.	17 51.5	+18 21	2.65	115'1	6.9, 7.0
I Arietis	OctMar.	I 43'7	+21 42	2.65	168.5	6.1, 7.0
P. xiii. 238	April-June	13 49'0	- 7 30	2.64	75'0	6.7, 7.3
81 Virginis	April-June	13 31.6	- 7 18	2.63	42'3	7'0, 7'3
Σ 425	OctFeb.	3 32.9	+33 45	2.60	97'I	7'0, 7'I
« Lyræ	June- Nov.	18 40.6	+ 39 30	2.28	136'7	5'1, 5'2
μ Draconis	May-Oct.	17 3'0	+ 54 37	2.40	163'0	5'0, 5'0
X 899	NovFeb.	3 16.1	+ 17 38	2'34	20'2	7.0, 7.5
Σ 2950	July-Jan.	22 46.9	+61 6	2'27	311.7	5.7, 6.9
DEFINING TESTS						
n Cassiop	AugFeb.	0 42'1	+ 57 13	4'90	175'0	3'5, 7'3
5 Argûs	DecApril	7 42.6		3.28	17'1	5.7, 7.5
δ Serpentis	May-July	15 29'4		3'48	188.4	3'9, 5'5
12 Aquarii	July-Nov.	20 58'1	- 6 16	2.76	191.6	6.0, 8.0
e Boötis	May-July	14 40'0	+ 27 33	3'02	329.5	2'5, 5'0
y Ceti	Nov.—Jan.	2 37.4	+ 2 45	2'93	289.7	3'4, 7'1
SPACE-PENETRATING TESTS			1118	1111		CONCELLES.
a Ursæ Min. (Polaris) .		I 17'0	+88 42	18.3 .	213.8	2'0, 8'4
β Orionis (Rigel)	DecMar.	5 9.2		9.5	201'1	1.0, 7.8
τ ¹ Aquarii	AugNov.	22 40.7	-14 40	28.5	114.6	5'9, 9'2
11 Aquilæ	June-Sept.	18 53'9	1	17'0	260'0	59, 92
19 Ophiuchi	June-Sept.	16 41.4	+ 2 16	22'3	91'9	6.0, 9.0
P. xii. 221	April-June	12 49.8	+12 7	28.6	203.0	6.8, 9.0
Camelop.4	AugFeb.	3 21'3	+ 55 3	14.6	159'2	5.4, 9.4
Tauri 39	NovMar.	3 34'4	+ 4 46	26.2, 37.7	55'7, 301'2	5.6, 9.0, 9.4
Camelop. 176	-	8 8'I	+72 46	43'9	85.5	5'7, 9'3
23 Ursæ Maj.	DecJune	9 22.5		22.8	271.5	4'0, 9'2
Scut. Sob. (29)	July-Sept.	18 25'1	1	12'2	256.5	6.0, 9.2
a Cassiop.	AugFeb.		+ 55 55	62.4	279.8	2'4, 9'5

D

Two and a Half Inches Aperture.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
DIVIDING TESTS			1			
DIVIDING TESTS		h. m.	0 /	"		
Tauri. Pon. 75 .	. June-Sept.	18 39.9	+ 5 22	2'22	115'3	6.2, 6.6
P. xx. 429	. June-Dec.	20 54.8	+50 I	2.06	31.9	6.2, 7.0
P. o. 181	. AugFeb.	0 41'5	+ 50 50	2.05	147'4	7.0, 7.8
Cephei 287 .		23 23.1	+73 29	2.03	32.6	7.0, 8.0
85 Lyncis	. Jan Apr.	8 2'3	+ 32 30	2.01	47.6	7'1, 7'9
Ursæ Maj. 284 .	. AprAug.	11 32.4	+64 59	1.97	322.7	6.7, 7.7
84 Aurigæ	. DecMay	6 32.6	+41 41	1.94	81.1	6.9, 7.7
∑ 2624	. June-Nov.	19 59.2	+ 35 42	1.92, 42.3	175.5, 327.5	7.0, 7.6, 9.5
ο _{Σ 35} 8	. June-Sept.	18 30.8	+ 16 53	f.88	19'4	6.5, 6.8
τ Ophiuchi.	. June-Aug.	17 56'9	- 8 II	I 84	254'5	5.0, 6.0
¥1116	. Dec.—Apr.	7 28'1	+12 33	1.82	109.9	7.0, 7.7
Σ 1871	. AprJuly	14 37'7	+ 51 53	1.80	291.5	7.0, 7.3
DEFINING TESTS						
μ Can. Maj	. DecMar.	6 50.9	-13 54	2.92	338.8	5.2, 8.2
38 Lyncis	. FebJune	9 11.8	+ 37 18	2.80	239'1	4.2, 6.3
• Draconis	. –	19 48.6	+69 59	2'94	5.2	4'2, 7'2
* Leporis	. Dec Mar.	5 8.0	-13 5	2.41	357'4	5'2, 7'7.
• Hydræ	Jan.—Apr.	8 40.7	+ 6 50	3'34	228.0	3.8, 7.4
· Leonis	. MarJune	II 17'9	+11 9	2.80	63'0	4.6, 7.4
SPACE-PENETRATING TES	TS		1.1			
• Persei	. NovMar.	3 37'I	+ 31 55	20'0	238.4	4.5, 9.0
66 Eridani	. DecMar.		- 4 49	52'5	9'4	6'0, 9'2
β Serpentis	. May-July	-	+ 15 47	30'7	265'0	3.6, 9.1
33 Arietis	. OctMar.	2 34'0		28.6	359.6	5'2, 9'3
a Lyres (Vega) .	. June-Nov.		+ 38 41	49'2	155'5	0'2, 9'5
12 Lacerte	. July-Nov.		+ 39 38	70.5	15'9	5'7. 9'7
P. v. 37	. NovMar.	5 12.4		9.0	203.0	6.0, 9.8
Cassiop. 63 .	. AugFeb.	0 32.4	+46 20	10'4	85.9	6.8, 9.9
θ Virginis	. AprJune	13 4'0	- 4 56	7'I, 70'9	344.6, 297.1	4'9, 8'5, 10'0
18 Libræ	. May-July	14 52.7	-10 41	19.5	38.9	6.0, 10.0
P. xix. 144	. July-Oct.	19 24.5	+ 2 39	34.2	5.2	6.0, 10.0
μ Herculis	. May-Sept.	17 42.0	+ 27 47	31.2	243'9	3'5, 10'0
		14.30				

Three Inches Aperture.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
	11.11.11					
DIVIDING TESTS	1 Second	h. m.	0 /	"	0	
33 Orionis	DecMar.	5 25.2	+ 3 12	1.26	28.3	6.0, 7.0
12 Lyncis	DecMay	6 36 2	+ 59 33	1.70, 8.7	126.8, 307.5	5.7, 6.4, 7.4
I 1333 · · · ·	FebJune	9 11.4	+35 51	1.69	42.2	6.7, 7.0
Persei 85	AugFeb.	2 44.8	+ 52 31	1.69	301.8	6·8, 7·1
ΟΣ 437	July-Nov.	·21 16·1	+ 31 58	1.64	49'3	6.0, 6.2
λ Ophiuchi	June-Aug.	16 25'2	+ 2 14	1.65	44.5	4.4 5.4
Cephei 83	May-Dec.	20 59'0	+ 56 13	1.62	349'3	6.4, 6.8
Lyncis 157	FebJune	9 13'9	+ 38 41	1.29	154.8	6.8, 7.4
± 644 · · · ·	OctMar.	5 2.6	+37 9	1.28	220'9	6.8, 7'I
∑ 2744 · · · ·	July-Oct.	20 57 3	+ I 5	I'54	170'0	6.3, 7.0
μ Libræ	May-July	14 43'1	-13 4I	1.21	337.4	5.2, 6.2
Ceti 187	NovFeb.	I 14'3	-16 24	1.20	20'0	7°I, 7'3
			N			
DEFINING TESTS	11111		6.5.5			
o Cephei	July-Mar.	23 13'9	+ 67 29	2.59	192.6	5.2, 7.6
49 Leonis	FebJune	10 29'0	+ 9 14	2.39	157'5	6.2, 8.4
P. xx. 376	July-Oct.	20 50'0	+ 4 6	1'97	287.5	6.2, 7.9
70 Ophiuchi	June-Aug.	17 59'7	+ 2 32	2.05	20'5	4'3, 6'2
84 Virginis	AprJune	13 37'3	+ 4 7	3.26	234.3	5'7, 8'0
23 Aquilæ	July-Oct.	19 12'7	+ 0 52	3'33	11.6 .	5'7, 9'0
	5 -					
		121				
SPACE-PENETRATING TESTS					10.27 205	前生の内心 と
59 Aurigæ	DecApr.	6 45 2	+39 I	22'2	223.5	6.7, 10.0
λ Geminorum	DecApr.	7 11.5	+ 16 45	9.2	33.0	3.5, 9.8
57 Pegasi	SeptJan.	23 3'7	+ 8 4	32.8	197.8	5'2, 10'0
P. xix. 307 ,	July-Oct.	19 46.8	+10 4	13'3	309'7	6.6, 10.2
P. xix. 128	June-Nov.	19 21.5	+ 19 39	23'7, 68'7	40'9, 319'9	5.1, 10.1, 9.8
v Ursæ Maj	FebJune	11 12.3	+33 43	7'0	147'3	3.5, 9.6
ð Equulei	July-Nov.	21 9'0	+ 9 33	40'0	21.2	4'5, 10'0
5 Serpentis.	May-July	15 13.4	+ 2 13	10'7	38 0	4.8, 10.0
31 Orionis	DecMar.	5 23'9	- 1 11	12.6	87.8	5.4, 10.5
a Tauri (Aldebaran) .	OctFeb.	4 29.4	+ 16 17	115'0	34'2	1'1, 10'3
θ Hydræ	FebMay	9 8.4	+ 2 48	52.7	175'2	4.0, 10.5
β Delphini	July-Nov.	20 32.2	+ 14 12	35'5	334'2	3.2, 10.6

D 2

Three and a half Inches Aperture.

-							1		
	NAME OF	Овјест		Visible	R.A.	Decl.	Distances	Posit. Angles	· Magnitude
	DIVIDING	Trere			1				
	DIVIDING	LESIS			h. m.	0 /	"	0	
X	1884 .		•	May-July	14 43'4	+24 50	1.20	55.0	63, 7.4
36	Androm.		•	Sept.—Feb.	0 48.9	+23 I	1.46	1.2	6.0, 6.4
42	Ceti .			DecFeb.	I 14'0	- I 6	1.45	355.0	6.7, 7.5
π	Aquilæ			July-Oct.	19 43.4	+11 32	1.43, 31.2	117.3, 306.0	6.1, 6.7, 11.0
L2	Cancri	• •	•	Dec.—May	8 47'3	+31 I	. 1.42	328.5	5.8, 6.2
0Σ	261 .	• •	•	AprJuly	13 6.7	+32 41	1.41	348.2	6.3, 6.9
P.	xxi. 50	• •		AugDec.	21 9.9	+40 41	1.40	127.7	6.6, 7.I
	Arietis	• •	•	Dec.—Mar.	2 52.6	+ 20 54	I.39	201.3	5.4, 6.3
	Pegasi 20	• •	•	July-Oct.	21 23.3	+ 10 35	1.33	306.4	6.6, 6.6
Ρ.	vii. 170		•	Jan.—Mar.	7 34'1	+ 5 30	1.31	141.2	7.0, 7.3
X	1037 .		•	Jan.—Apr.	7 5.8	+27 25	1.30	310.6	6.9, 2.I
Ρ.	xvi. 270	• •		June-Aug.	16 56.5	+ 8 36	1.59	157.0	6.7, 7.9
	Defining	TESTS							
6	Cassiop.		1	AugFeb.	23 43'2	+61 35	1.60	. 195.6	5.1, 7.6
33	Pegasi			July-Dec.	22 18.2	+20 17	2.06, 63.6	179'9, 328.6	6.1, 8.7, 8.3
L	Cassiop.			July-Mar.	2 197	+66 53	1.98, 7.4	262.0, 108.5	5°0, 7'5, 8'1
ø	Virginis			May-July	14 22'3	- I 43	4'09	112.6	5'2, 9'4
P.	xi. 126			MarJune	11 32.6	— I 48	4.92	.279'5	6.2, 9.7
17	Lyræ.	• •		June-Nov.	19 3.1	+ 32 20	3.68	321.6	5'5, 9'7
			-						
SPA	CE-PENETRA	TING T	ESTS	The sea					
6	Leporis			DecMar.	5 7.0	-12 0	12.6	336.2	4'5, 10'0
P.	xx. 116			July-Oct.	20 18.8	+ 0 42	32.9	28.9	6.2, 10.3
θ	Cancri			JanApr.	8 25.0	+ 18 29	60.8	60.0	5.5, 10.4
υ	Cygni			June-Nov.	21 13.2	+34 25	15.1, 21.3	220.0, 178.5	4'3, 10'3, 10'2
a	Androm.			SeptFeb.	0 2.5	+28 28	71.0	273.0	2'0, 10'4
13	Lacertæ			July-Nov.	22 39.0		14'7	129'4	5'1, 10'4
5	Lyncis			DecMay	6 16.9	+ 58 29	30'3, 95'9	139'1, 272'5	6.0, 10.5, 8.5
γ	Persei			AugFeb.	2 56.5	+53 3	57'7	323.7	3.1' 10.8
49	Piscium			SeptFeb.	0 24.9	+ 15 24	16.2	105.8	7.0, 10.8
π	Geminoru	m.		JanApr.	7 40'1	+ 33 42	22.0, 95.0	211.6, 340.0	5.0, 10.8, 10.2
56	Herculis	· ·		May-Aug.	16 50'3	+ 25 55	18.0	93'I	6.0' 10.0
44	Virginis			AprJune	12 53.8	- 3 12	20'9	. 54.6	5.8, 11.0
_					A COL		Sandy and		

Four Inches Aperture.

			1	1	1	1
Name of Object	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
			524			
DIVIDING TESTS	The second second	h. m.	0 1	"	0	
P. vii. 52	DecApr.	7 11.2	+ 9 30	1.28	113.2	7'0, 7'0
\$ Scorp	May-July	15 58.1	-11 4	1'27, 7'3	195'7, 66'0	5'0, 5'4, 7'2
£ 2049	May-Aug.	16 23.3	+26 15	1.26	210'9	6.6, 7.9
Cor. Bor. 1	May-July	15 13.5	+27 15	1.55	308.1	5°6, 6°1
\$ 1606	MarJune	12 50	+40 32	1.51	338.1	6.2, 7.0
05 182	DecApr.	7 46.7	+ 3 41	1'20	43.2	7'0, 7'2
Pegasi 148	SeptDec.	22 8.8	+ 7 25	1'20	125.6	6.0, 7.7
Herculis 417	June-Sept.	18 5.1	+ 16 27	1.10	236.0	6.7, 7.8
Draconis 99	May-Oct.	16 22'3	+61 57	1.19	2'0	6.2, 7.4
14 Orionis	DecMar.	5 1.6	+ 8 20	1.12	203.3	5.8, 6.0
Tauri Pon. 9	June-Aug.	17 51.2	+ 0 5	1'12	274'5	6.7, 7.0
P. xxi. 51	June-Jan.	21 9'0	+ 59 31	1'12	226.3	5'9, 6.6
		in	Sec. 10			
DEFINING TESTS	1122 1910		1000		The second s	Distant Parts
π Arietis	DecMar.	2 42.9	+ 17 0	3.29, 25.2	122'5, 109'9	5.5, 8.2, 11.0
ζ Herculis	May-Aug.	16 37 0	+ 31 49	1.62	82'0	2.6, 7.0
δ Cygni	July-Dec.	19 41.4	+44 50	1.68	318.2	2.8, 7.5
$ \Psi^2 $ Orionis	DecMar.	5 20.8	+ 2 59	2.66	324.4	5.4, 9.0
5 Aurigæ	OctApr.	4 52.4	+39 13	2.75	246.8	6.0, 9.7
η Draconis	Apr.—Aug.	16 22.4	+61 46	5.26	142'1	2.8, 9.0
		1				
SPACE-PENETRATING TESTS	1				RA Bark	a play 200
ν ¹ Cor. Bor	May-Aug.	16 18.2	+ 33 58	66.4	236.6	5.1 10.2
5 Ursæ Min	-	14 27.8	+76 12	56.4	129'4	4.8, 10.5
3 Leonis	JanJune	9 22.4	+ 8 41	25'1	79'2	6.0, 10.8
· Ursæ Maj	JanJune	8 51.4	+ 48 29	9.6	356.7	3'2, 10'2
41 Arietis . , .	DecMar.	2 43.4	+ 26 48	21.2, 34.0	265.8, 203.5	4'1, 11'3, 11'0
2 Lacertæ	AugDec.	22 16.4	+45 58	48.2	9'7	5.0, 10.9
P. i. 145	OctFeb.	I 34'9	+ 25 10	10'9	33'3	6.1, 10.9
42 Piscium	DecFeb.	0 16.2	+12 51	29'7	338.1	6.6, 11.0
54 Ophiuchi	June-Aug.	17 29'1	+13 15	21.6	74'7	6.0' 11.0
« Andromedæ	AugFeb.	23 34.8	+43 42	46.6, 103.2	188.7, 294.6	40, 110, 110
γLibræ	May-July	15 29'1	-14 25	41.3	151.8	4.2, 11.3
Lyncis 51.	DecApr.	7 20.5	+48 26	16.9	94'3	6'2, 11'2
						and the second

Five Inches Aperture.

NAME OF	Овјест	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude		
Dumpung	Devery Wares								
	DIVIDING TESTS		h. m.	0 /	"	0	a start		
Vulpec. 94	+ • •	AugNov.	20 27'I	+ 25 24	1.10	78'1	6'3, 7'6		
2115 .		AugFeb.	1 10.1	+ 57 33	1.00	149'8	7'0, 7'0		
\$ 749 ·		Nov.—Mar.	5 30'1	+ 26 52	1.00	177.6	6.5, 7.0		
η Orionis		DecMar.	5 187	- 2 30	1.00	84.6	4'0, 6'0		
OX 313 .		May-Sept.	16 28 7	+40 21	0'99	151.6	7.0, 7.6		
21 Oph		June-Aug.	16 45.6	+ 1 25	0.98	162'7	6.0, 8.0		
OX 50 .		Aug.—Apr.	3 1.3	+71 7	0*98	213'4	7.0, 7.0		
e Equulei		July-Nov.	20 53'4	+ 3 51	0'97, 10'5	285.6, 72.9	6'1, 6'8, 7'4		
P. xix. 263		July-Dec.	19 39.8	+39 2	0.96	196.2	7.0, 8.0		
48 Cephei		5 (6 3) (3 50'9	+80 23	0.96	35'0	5'7, 7'0		
4 Lyncis		NovMay	6 11.9	+ 59 25	0.92	101 '2	6.2, 7.5		
A.C. 12		July-Oct.	19 52'4	- 2 34	0.83	332'4	7'0, 8'0		
	· · · · · · · · · · · · · · · · · · ·								
Defining	TESTS						in a		
ω ² Aquarii		OctDec.	23 36.8	- 15 10	5.68	87.8	5'0, 11'0		
42 Orionis		DecMar.	5 29.8	- 4 55	1'73	217'7	5'5, 9'2		
13 Delphini		SeptNov.	20 42'2	+ 5 35	1.61	186.4	5.2, 8.9		
60 Cygni		AugDec.	20 57 2	+45 42	2'71	165'1	5.5, 9.5		
68 Herculis		June-Aug.	17 13.1	+33 14	4.41	61.8	5'1, 10'1		
ψ Cassiop.		AugFeb.	I 17'9	+ 67 32	28.7, 3.08	106.8, 256.0	4.5, 9.7, 10.6		
SPACE-PENETR.	ATING TESTS				Ma Energy	N. S. M.	のなりたけ		
14 Aurigæ		Nov.—Mar.	5 8.0	+ 32 33	11'9, 14'7	348.1, 225.4	5'1, 11'0, 7'5		
14 Monoc.		Dec.—Apr.	6 28.6	+ 7 40	10.2	208.6	6.9, 10.9		
40 Cassiop.	· · · ·	-	I 29'4	+72 27	53'3 •	237'0	6.0' 10.0		
74 Oph		June-Aug.	18 15.2	+ 3 19	27'9	285.6	5.0, 10.8		
P. xxii. 36.		AugDec.	22 90	+39 9	27'2	178.5	6.0' 11.0		
12 Ceti .		Dec.—Feb.	0 24.2	- 4 35	8.6, 212.4	187.0, 110.3	6.2, 10.9, 10.0		
20 Pegasi	· · ·	AugNov.	21 55.5	+ 12 34	51'1	325.5	5'5, 11'4		
55 Androm.		AugFeb.	I 46.3	+40 10	60'I	355.2	5.2, 11.2		
54 Sagittarii	. 2	July-Sept.	19 34'2	- 16 32	35.8, 45.6	244.5, 41.7	5.5, 11.5, 9.0		
96 Aquarii		OctDec.	23 13.5	- 5 45	9'9	23.5	6.5' 11.3		
85 Virginis		AprJune	13 39'4	-15 12	43'3	311.8	6.0, 11.7		
56 Aquilæ	•	AugOct.	19 47 9	- 8 52	46.7	77.8	5'7, 11'8		
				2123			1.		

Six Inches Aperture.

NAME OF OBJECT	Visible	R.A.	Decl.	Distances	Posit. Angles	Magnitude
DIVIDING TESTS		h. m.	0 1	"	٥	and the second
Canis Maj. 89	FebApril	6 43.8	~15 I	0.92	. 288.9	6.0, 8.7
P. iv. 288	OctFeb.	4 58.6	+ 19 38	0.88	336.8	6.5, 7.2
ΟΣ 175	NovMar.	5 27'9	+ 31 12	0.87	332.2	5'5, 6'5
Σ 2924	-	22 29'7	+69 20	0.84	265.6	6.5. 7.0
ΟΣ 229	FebJune	10 41.5	+41 42	0.84	330'I	6.5, 7.5
P. v. 222	NovMar.	5 41.5	+ 20 50	0.85, 75.6	314'7, 161'3	6.2, 8.0, 7.5
οΣ 383	July-Dec.	19 39'0	+40 27	0.85	25.1	6.5, 7.9
X 1883	April-July	14 43'2	+ 6 26	0.82	259'0	7'0, 7'0
02 369	-	19 8.8	+71 54	0.80	41.3	7.0, 7.5
Σ 2215	June-Sept.	17 42'1	+ 17 44	0.79	300.3	6·1, 7·8
μ ² Boŏtis	May-Sept.	15 20'3	+ 37 47	108.4, 0.78	171'5, 104'0	4.5, 6.5, 7.8
β 132	July-Sept.	18 4.5	-19 52	0'79	. 237'0	6.7, 7.2
						a la serie
DEFINING TESTS						
Cygni 153	July-Dec.	20 9'3	+ 51 7	4'03	81.3	5'9, 10'9
θ Aurigæ	NovMar.	5 52.0	+ 37 12	2.37	358.5	3.0, 8.6
« Leonis	FebJune	9 18.0	+ 26 41	3'36, 10	205'1, 65	5'1, 10'2, 11'5
π Cephei . ·	-	23 4'3	+74 46	1.31	27'3	4'7, 8'7
6 Serpentis	May-July	15 15.2	+ 1 8	2.28	13'2	4'7. 9'4
Cancri 5	DecApril	7 54'2	+ 23 54	2.70	332.5	6'1, 10'7
						tradit Dug the
SPACE-PENETRATING TESTS						
، Ceti	DecFeb.	0 10.6	- 9 28	62'0	15'5	4'0, 11'5
I Aquarii	July-Oct.	20 33.6			217'4, 38'9	
115 Tauri.	Dec.—April		+ 17 52	55'9, 72'9 10'2	308.4	5'5, 11'5, 11'3 6'0, 11'4
Pegasi 129.	AugNov.	5 20 5 22 4·8	+17 52	21.5	253.4	6'0, 11 4 6'0, 11 8
72 Virginis	April-June				253 4 16'1	6'2, 11'8
8 Cancri	Jan.—April	13 24'5 8 38'2	- 5 53	29'2		5'0, 11'8
41 Sextantis	April—June	-	+ 18 37	41'9	113'2	50, 11 8 6'0, 11 8
p Boötis	May-July	10 44 6	- 8 18	27'0	303.8	
a ² Capricorni	AugOct.	14 26'9	+ 30 52	53'3	334'0	3.6, 11.7
o Cassiop.	Aug.—Feb.	20 11.7	- 12 54	7'7	147'9	3'5, 11'5
• Aurigæ	Nov.—April	0 38.3	+47 40	32'2	303.9	5'0, 12'0
		5 41'3	+39 8	38'9, 47'9	350.0, 32.9	5'0, 12'0, 11'0
110 Herculis	June-Sept.	18 40.8	+20 26	44'7, 61'2	95.6, 92.0	5'0, 12'0, 11'0

Seven Inches Aperture.

	1		1		1	
NAME OF OBJECT	Visible	R. A.	Decl.	Distances	Posit. Angles	Magnitude
DIVIDING TESTS						
		h. m.	0 /	"	0	
73 Ophiuchi	June-Aug.	18 3.9	+ 3 58	0.83	249'5	6.0, 7.6
54 Aurigæ	Jan.—Apr.	6 32'4	+ 28 22	0'83	36.9	6.0, 8.0
οΣ 338	June-Sept.	17 468	+15 21	0'72	25.0	6.2, 6.4
Hydræ 348	AprJune	12 57.6	-19 58	0.21	133'4	6.2, 6.2
Cygni 226	July-Dec.	20 35.4	+40 10	0.70, 69.0	23.7, 69.8	6.4, 6.6, 7.6
16 Vulpeculæ	July-Nov.	19 57'2	+24 37	0.69	94*5	5'7, 5'9
Dawes 6	DecMar.	5 23.3	- 3 24	0.69	84.4	7'1, 7'4
ΟΣ 156	Dec.—Apr.	6 40'7	+ 18 19	0.68	317'1	6.6, 6.6
η Coronse	May-Aug.	15 18.5	+ 30 42	0.62	182 2	57, 60
λ Cygni	AugDec.	20 43.0	+36 4	0.62	80.3	5.0, 7.0
B.A.C. 8277	July-Mar.	23 43 2	+64 15	0.58, 48.9	253.8, 353.4	6.5, 7.7, 8.5
P. xviii. 132	June-Sept.	18 30.8	+23 31	0.26	352'1	6.3, 6.6
DEFINING TESTS						
44 Cygni	July-Dec.	20 26.7	+ 36 33	2.26	157'9	6.3, 11.0
58 Ceti	NovFeb.	1 52'2	- 2 37	2'73	12.8	6'3, 11'5
Lyrægi	June-Nov.	18 50'7	+ 33 49	1.86, 45'3	133'9, 350'6	6.0, 10.0, 7.3
τ Cygni	Aug Dec.	21 10'2	+ 37 33	1.10	116.3	3'7, 7'8
46 Virginis	AprJune	12 54'7	- 2 45	1'44	151.5	5.4, 9.5
46 Eridani	DecMar.	4 28.4	- 6 59	1.47	57.0	6.0, 10.0
			- 55		57	
and the second						
Space-penetrating Tests		Re-				the shares
β Aquarii	SeptNov.	21 25.6	- 6 4	34"3, 54"5	318.9, 184.9	3'0, 10'9, 11'5
τ Boötis	AprJune	13 41.8	+18 2	8.9	352'0	4'1, 11'5
94 Ceti	DecFeb.	3 6.9	- I 37	57	250'9	5.5, 11.5
к Delphini	July-Nov.	20 33.6	+ 9 41	12.5	319'0	5.2, 11.8
a ² Cancri	Jan.—Apr.	8 52'3	+12 18	11.1	325.0	4'4, 12'0
β Aquilæ	July-Oct.	19 49'7	+ 6 7	12.5	17'7	3'7, 12'1
B.A.C. 8173		23 21.4	+70 3	20'1	312'3	6.2, 11.9
χ Delphini	July-Nov.	20 50'2	+12 7	40'0	21.8	6.0, 12.0
¢ Pegasi	AugNov.	22 41'0	+11 35	11'9, 127'3	112.6, 21.8	4.6, 12.2, 11.3
30 Pegasi	AugNov.	22 14'7	+ 5 13	6'3, 10'1	20.7, 222.8	6.0, 11.4, 12.3
53 Virginis	AprJune	13 6'0	-15 35	70'9	9.6	6.0, 12.5
30 Geminorum	Dec.—Apr.	6 37.5	+13 21	28.0	184'1	6.0, 12.7
		- 57 5				

SELENOGRAPHICAL LONGITUDES AND LATITUDES OF LUNAR CRATERS.

NAME OF CRATER	Longitude +=West -=East	$\begin{array}{c} \text{Latitude} \\ \text{N=North} \\ \text{S=South} \end{array}$	NAME OF CRATER	Longitude +=West -=East	Latitude N = N orth S = S outh
Agrippa (102) i Airy (201) iv Albategnius (289) iv Alpetragius (205) iii Alphonsus (207) iii	$\begin{array}{r} & & & \\ & + & 10 & 22 \\ + & 5 & 54 \\ + & 3 & 58 \\ - & 4 & 45 \\ - & 3 & 14 \end{array}$	N 4 4 S 17 46 S 11 21 S 15 55 S 12 59	Hesiodus (B) [187] iii Hyginus (93) i Kepler (144) ii La Hire (123) ii Lalande (210) iii	$\begin{array}{c} & & & & \\ & -17 & 0 \\ + & 6 & 22 \\ -37 & 40 \\ -25 & 10 \\ - & 8 & 46 \end{array}$	S 26 50 N 8 2 N 7 51 N 27 18 S 4 27
Archimedes (A) [120] ii. Archytas (46) i Argelander (467) iv. Aristarchus (148) ii. Aristillus (83) i.	$ \begin{array}{rrrrr} - 7 & II \\ + 4 & I3 \\ + 4I & 43 \\ - 47 & I0 \\ + I & I \end{array} $	N 27 45 N 58 24 S 45 46 N 23 32 N 33 45	Landsberg (222) iii. Langrenus (338) iv. Laplace (A) [134] ii. Le*Monnier (A) [53] i. Lichtenberg (151) ii.	$\begin{array}{rrrr} -26 & 20 \\ +60 & 30 \\ -26 & 34 \\ +29 & 8 \\ -67 & 5 \end{array}$	S 0 27 S 8 33 N 43 16 N 26 0 N 31 25
Beer (446) iv Bessarion (145) ii Bessel (73) i Billy (266) iii Bode (107) ii	$\begin{array}{rrrrr} + 34 & 33 \\ - 37 & 4 \\ + 17 & 22 \\ - 49 & 58 \\ - 2 & 39 \end{array}$	S 17 48 N 14 52 N 21 54 S 14 0 N 6 37	Lindenau (370) iv Linné (74) i Mädler (466) iv Manilius (95) i Marius (147) ii	$\begin{array}{rrrrr} +24 & 30 \\ +11 & 33 \\ +29 & 12 \\ +8 & 47 \\ -50 & 6 \end{array}$	S 31 52 N 27 48 S 10 56 N 14 27 N 11 50
Brayley (479) ii Bullialdus (213) iii Burg (50) i Calippus (76) i Campanus (226) iii	$\begin{array}{rrrr} -36 & 52 \\ -22 & 7 \\ +27 & 32 \\ +10 & 29 \\ -27 & 27 \end{array}$	N 20 54 S 20 30 N 44 57 N 38 46 S 27 37	Maskelyne (67) i Menelaus (70) i Messier (327) iv Milichius (118) ii Moretus (262) iii	$\begin{array}{rrrr} +29 & 40 \\ +15 & 31 \\ +47 & 12 \\ -29 & 40 \\ -7 & 9 \end{array}$	N 2 32 N 16 24 S 1 57 N 10 0 S 69 45
Capella (324) iv. . . Capuanus (238) iii. . . . Carlini (128) ii. . . . Cassini (A) [81] i. . . . Censorinus (325) iv. . . .	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S 7 33 S 34 20 N 33 30 N 40 23 S 0 27	Mösting (211) iii Murchison (A) [483] i Mutus (400) iv Neander (373) iv Olbers (159) ii	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S o 36 N 4 4 S 63 6 S 31 10 N 7 55
Cepheus (31) i Cleomedes (12) i Conon (88) i Copernicus (112) ii Crüger (278) iii	+45 40 +54 47 + 1 57 -20 0 -66 40	N 40 59 N 26 50 N 21 31 N 9 21 S 16 48	Petavius (340) iv Picard (4) i Piccolomini (371) iv Pico (131) ii Plinius (61) i	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S 24 50 N 14 28 S 29 11 N 45 28 N 15 17
Delambre (301) iv Delisle (127) ii Democritus (38) i Dionysius (99) i Dollond (303) iv	$\begin{array}{rrrr} + 17 & 29 \\ - 34 & 48 \\ + 33 & 30 \\ + 17 & 9 \\ + 14 & 16 \end{array}$	S 2 1 N 29 59 N 62 8 N 2 51 S 10 14	Posidonius (A) [54] i. Proclus (60) i. Prom. Agarum. (1) i. Pythagoras (176) ii. Pytheas (124) ii.	$\begin{array}{c} +29 & 11 \\ +46 & 30 \\ +64 & 11 \\ -62 & 15 \\ -20 & 30 \end{array}$	N 31 33 N 16 10 N 13 54 N 63 6 N 20 14
Drebbel (240) iii Eichstädt (280) iii Einmart (3) i Encke (143) ii Eratosthenes (110) ii	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	S 40 47 S 20 31 N 23 35 N 4 18 N 14 24	Ramsden (228) iii Reiner (146) ii Reinhold (114) ii Sacrobosco (312) iv Scheiner (A) [261] iii	$\begin{array}{rrrr} -31 & 42 \\ -56 & 1 \\ -22 & 37 \\ +16 & 2 \\ -26 & 36 \end{array}$	S 32 26 N 7 5 N 3 13 S 24 19 S 59 58
Euclides (221) iii Euler (125) ii Fabricius (383) iv Franklin (32) i Flamsteed (223) iii	$\begin{array}{rrrr} -29 & 25 \\ -28 & 54 \\ +40 & 46 \\ +47 & 12 \\ -44 & 12 \end{array}$	S 7 11 N 23 6 S 42 8 N 38 39 S 4 31	Schubert (A) $[ro]$ i Seleucus (ro_2) ii Taruntius (ro_2) i Thales (ro_3) i Theophilus (ro_3) iv	$\begin{array}{rrrr} +77 & 16 \\ -65 & 48 \\ +45 & 59 \\ +49 & 12 \\ +26 & 18 \end{array}$	N 2 28 N 20 54 N 5 40 N 61 58 S 11 21
Gassendi (232) iii Goclenius (328) iv Grimaldi (272) iii Hansen (A) [11] i Harding (152) ii	$\begin{array}{ccc} -39 & 31 \\ +44 & 29 \\ -68 & 58 \\ +74 & 0 \\ -70 & 52 \end{array}$	S 16 57 S 10 0 S 2 43 N 13 17 N 43 9	Timocharis (121) ii Tobias Mayer (117) ii Tycho (180) iii Ukert (109) i Vitello (229) iii	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N 26 43 N 15 33 S 42 52 N 7 48 S 30 0
Helicon (129) ii Hell (184) iii Heraclides (135) ii Hercules (29) i Herschel (212) iii	$\begin{array}{cccc} -22 & 53 \\ -8 & 20 \\ -31 & 1 \\ +38 & 2 \\ -2 & 9 \end{array}$	N 40 10 S 31 59 N 41 8 N 46 4 S 5 37	Vitruvius (57) i. Werner (295) iv. Wichmann (438) iii. Wollaston (150) ii. Zagut (365) iv.	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	N 17 36 S 27 30 S 7 41 N 30 17 S 31 42

1" of arc at the mean distance of the Moon is equal to 1'14 miles. 1° of selenographical longitude or latitude at the centre of the Moon is equal to 16"'6 of arc, or 18'9 miles.

LUNAR CRATERS IN ORDER OF SELENOGRAPHICAL LONGITUDE.

Longitude + = West	NAME OF CRATER	Latitude N = North S = South	Longitude - = East	NAME OF CRATER	Latitude N=North S=South
+77 16	Schubert (A) [10] i.	N 2 28	$ \begin{array}{r} \circ & \circ \\ - & 2 & 9 \\ 2 & 39 \\ 3 & 14 \\ 4 & 45 \\ 5 & 54 \\ \end{array} $	Herschel (212) iii	S 5 37
74 0	Hansen (A) [11] i.	N 13 17		Bode (107) ii	N 6 37
64 11	Prom. Agarum, (1) i.	N 13 54		Alphonsus (207) iii	S 12 59
62 50	Einmart (3) i.	N 23 35		Alpetragius (205) iii	S 15 55
60 30	Langrenus (338) iv.	S 8 33		Mösting (211) iii	S 0 36
59 47 54 47 53 52 49 12 47 12	Petavius (340) iv. . Cleomedes (12) i. . Picard (4) i. . Thales (36) i. . Franklin (32) i. .	S 24 50 N 26 50 N 14 28 N 61, 58 N 38 39	7 9 7 11 8 20 8 46 9 12	Moretus (262) iii	S 69 45 N 27 45 S 31 59 S 4 27 N 45 28
47 12	Messier (327) iv	S I 57	II 37 II 52 I3 0 I7 0 20 0	Eratosthenes (110) ii	N 14 24
46 30	Proclus (60) i	N 16 10		Tycho (180) iii	S 42 52
45 59	Taruntius (326) i	N 5 40		Timocharis (121) ii.	N 26 43
45 40	Cepheus (31) i	N 40 59		Hesiodus (B) [187] iii	S 26 50
44 29	Goclenius (328) iv	S 10 0		Copernicus (112) ii	N 9 21
41 43	Argelander (467) iv	S 45 46	20 30 22 7 22 37 22 53 24 3	Pytheas (124) ii	N 20 14
40 46	Fabricius (383) iv	S 42 8		Bullialdus (213) iii	S 20 30
39 45	Neander (373) iv	S 31 10		Reinhold (114) ii	N 3 13
38 2	Hercules (29) i	N 46 4		Helicon (129) ii	N 40 10
34 48	Capella (324) iv	S 7 33		Carlini (128) ii	N 33 30
34 33	Beer (446) iv	S 17 48	25 10 25 42 26 20 25 34 26 36	La Hire (123) ii	N 27 18
33 30	Democritus (38) i	N 62 8		Capuanus (238) iii	S 34 20
32 22	Censorinus (325) iv	S 0 27		Landsberg (222) iii	S 0 27
31 45	Piccolomini (371) iv	S 29 11		Laplace (A) [134] ii	N 43 16
31 3	Vitruvius (57) i	N 17 36		Scheiner (A) [261] iii	S 59 58
29 40	Maskelyne (67) i. . Mutus (400) iv. . Mädler (466) iv. . Posidonius (A) [54] i. . Le Monnier (A) [53] i. .	N 2 32	27 27	Campanus (226) iii	S 27 37
29 22		S 63 6	28 50	Tobias Mayer (117) ii	N 15 33
29 12		S 10 56	28 54	Euler (125) ii	N 23 6
29 11		N 31 33	29 25	Euclides (221) iii	S 7 11
29 8		N 26 0	29 40	Milichius (118) ii	N 10 0
27 32	Burg (50) i	N 44 57	31 1 31 42 34 48 36 37 36 52	Heraclides (135) ii	N 41 8
26 18	Theophilus (319) iv	S 11 21		Ramsden (228) iii	S 32 26
24 30	Lindenau (370) iv	S 31 52		Delisle (127) ii	N 29 59
23 23	Plinius (61) i	N 15 17		Encke (143) ii	N 4 18
21 56	Zagut (369) iv	S 31 42		Brayley (479) ii	N 20 54
17 29	Delambre (301) iv	S 2 I	37 4	Bessarion (145) ii	N 14 52
17 22	Bessel (73) i	N 21 54	37 12	Vitello (229) iii	S 30 0
17 9	Dionysius (99) i	N 2 51	37 40	Kepler (144) ii	N 7 51
16 2	Sacrobosco (312) iv	S 24 19	37 56	Wichmann (438) iii	S 7 41
15 31	Menelaus (70) i	N 16 24	39 31	Gassendi (232) iii	S 16 57
14 16	Dollond (303) iv	S 10 14	44 12	Flamsteed (223) iii. . Wollaston (150) ii. . Aristarchus (148) ii. . Drebbel (240) iii. . Billy (266) iii. .	S 4 31
11 33	Linné (74) i	N 27 48	46 54		N 30 17
10 29	Calippus (76) i	N 38 46	47 10		N 23 32
10 22	Agrippa (102) i	N 4 4	48 13		S 40 47
8 47	Manilius (95) i	N 14 27	49 58		S 14 0
6 22	Hyginus (93) i. . . Airy (291) iv. . . . Archytas (46) i. . . . Cassini (A) [81] i. . . . Albategnius (289) iv. . . .	N 8 2	50 6	Marius (147) ii	N 11 50
5 54		S 17 46	56 1	Reiner (146) ii	N 7 5
4 13		N 58 24	62 15	Pythagoras (176) ii	N 63 6
4 9		N 40 33	65 48	Seleucus (162) ii	N 20 54
3 5 ⁸		S 11 21	66 40	Crüger (278) iii	S 16 48
3 6	Werner (295) iv	S 27 30	67 5	Lichtenberg (151) ii	N 31 25
1 57	Conon (88) i	N 21 31	68 58	Grimaldi (272) îii	S 2 43
1 9	Ukert (109) i	N 7 48	70 27	Eichstädt (280) iii	S 20 31
1 1	Aristillus (83) i	N 33 45	70 52	Harding (152) ii	N 43 9
+ 1 0	Murchison (A) [483] i	N 4 4	-77 33	Olbers (159) ii	N 7 55

SEPARATING POWER OF TELESCOPES.

Dawes (*Memoirs of the Royal Astronomical Society*, volume xxxv. p. 158) found by a great variety of experiments with small telescopes that a one-inch aperture would just separate a double star composed of two stars of the sixth magnitude if their central distance was 4":56, when the atmospheric circumstances were moderately favourable. The following little table, as calculated by him, will be convenient for reference.

Aperture in	Least separable	Aperture in	Least separable	Aperture in	Least separable
Inches	Distance	Inches	Distance	Inches	Distance
1.0	4'56	4°0	"1'14	7'0	0.65
1.5	3'04	4°5	1'01	8'0	0.57
2.0	2'28	5°0	0'91	9'0	0.507
2.5	1'82	5°5	0'83	10'0	0.456
3.0	1'52	6°0	0'76	11'0	0.414
3.5	1'30	6°5	0'70	12'0	0.380

SPACE-PENETRATING POWER OF TELESCOPES.

The following table, based on the assumption that a star of any magnitude contains $2\frac{1}{2}$ times the light of one of the magnitude next below, is taken from New-comb and Holden's *Astronomy*, 4th edition, page 419. This is practically Struve's ratio.

Aperture in Inches	Faintest Star Visible	Aperture in Inches	Faintest Star Visible	Aperture in Inches	Faintest Star Visible
	Mag.		Mag.		Mag.
1.0	9'0	4'0	12'0	7'0	13.3
1°5 2°0	9'9	4'5	12'3	8.0	
2'0	10'5	5'0	12.5	9.0 .	13.2 13.8
2.5	11.0	5.5	12.7	10'0	14.0
3.0	11.4	6.0	12'9	11.0	14'2
3.2	11.7	6.5	13'1	12'0	14'4

APPENDIX.

Heliocentric Minima of & Persei (Algol) 3^h 0^m 45^s + 40^o 31'. 0.

Da	ays	hrs.	min.	I	Days	hrs.	min.	Day	s hrs	. min.	Day	s hrs.	min.
1886, Jan.	13	14	23	Marc	h 6	5	3	August 10	5 I.	5 30	October 24	II	4
1	1 6	11	12		20	13	7	IÇ) 12	19	27	7	53
1	19	8	I		23	9	56	22	9	8	November 13	12	46
2	22	.4	50	April	9	14	50	September 8	3 1.	t I	16	9	35
February	5	12	55		12	11	39	II	10	50	Ig	6	24
	8	9	43		15	8	27	14	. 7	39	December 3	14	28
1	II	6	32	July	7	12	6	October 1	12	2 32	6	II	17
2	25	14	36		10	8	55	4	9	21	. 9	8	6
2	28	11	25		27	13	29	7	6	10	26	12	59
March	3	8	14		30	10	37	21	14	1 15	29	9	48

Algol, 2.2 mag. at maximum, 3.7 at minimum. It commences to diminish in light 4 hours 23 minutes before minimum, and regains its full brilliancy 5 hours and 37 minutes after. The most rapid decrease of light begins at 1 hour 40 minutes before the minimum, and the most rapid increase 1 hour 40 minutes after.

Heliocentric Minima of & Libree 14^h 54^m 53^s - 8° 3'.9. 4.9 mag. max. 6.1 mag. min.

Days hrs. min.	Days	hrs.	min.	Ĩ	Days	hrs.	min.	Da	iys	hrs.	min.
April 3 16 44	May 1	15	0	June	5	12	50	July	3	11	6
10 16 18	8	14	34		12	12	24	1	0	10	40
17 15 52	15	14	8		19	11	58	:	17	10	14
24 15 26	22	13	42		26	11	32	2	4	9	48
	29	13	16					3	j I	9	22

S	
RS.	
A	
L	
ST	
~.	
E	
1	
B	
AIA	
H	
PL,	
4	
>	
-	

NAME OF					MAG	MAGNITUDE	Ернемел	EPHEMERIS (1886)	
VARIABLE STAR.	-4	K.A.		Decl.	Maximum	Minimum	Maximum	Minimum	NOTES AND COLOURS
R. Andromedæ.	· i o	Ĕœ	н 1 32	+37° 56'7	5.6-8.6	Below 13	February 10	September I	The minimum is derived from Schmidt's observations in 1883. Schönfeld eives maximum December 23.188c.
R. Arietis .	N	6	38 +24	24 31.5	9.8-9.2	2.21	February 6, August 11	{ November 10 (1885), } { May 15, Nov. 17 }	Close to the 6th mag. star 21 Arietis.
o Ceti (Mira) .	q	13 3.	35 -	- 3 29.7	5L.I	5.6-8	January 5	August 15 {	Very red near minimum, a blue 9'5 mag. at 83°: r16".
R. Leporis .	4	54 25	5 - 14	4 58-7	<i>L</i> .9	5.8	December 12	April 26 {	Hind's scarlet star. Irregular. In 1883 the maxima and minima took place 8 weeks before the predicted times.
8. Orionis .	S	23 2	23 - 4	4 47.0	5.8	Below 13	November 1	April 15	Very red. Period rather uncertain.
R. Leonis	6	41 2	26 +11	1 57.4	5.2-6.4	9.4-ro	November 9 (1885), September 18	April 23	Very red.
R. Ursæ Maj.	IO	36 3	34 + 69	9 22.4	1.8-1.9	13.4	May II	January 28	Orange.
R. Virginis .	12	32 4	43 +	0.12 1	5.2-5.9	6.01-01	{ November 15 (1885), } { April 9, September 2 }	{January 31, June 25, { November 18	Reddish at maximum, deeper at mini- mum, like many other variables.
R. Hydræ	13	23 3	30 - 22	22 41.5	4 -5.5	5.0I	November 2	April 16	Red. P. xiii. 94.
R. Aquilæ.	61	0 5	53 +	8 3.5	6.4-7.4	Z.II	May 11	November 21	Reddish.
xª Cygni	61	46 I	II +32	9.26 28	4.0-6.0	8.21	January 8	} 61 yuly	x of Bayer, not x of Flamsteed. Fine red.
T. Cephei	21	00	2 + 68	9.I 80	6.4	8.6	March 13	September 20	Reddish.
			-		_				

POSITION OF THE LUNAR TERMINATOR (MIDNIGHT).

A			18					
Days o	16'F	Days o November 17-40	30 M	Days o	FT F	December	Days o	21 M
November 1-25								
2-37	55 E 6 E	18-52	39 M	3-55	7 E 16 E		18-57 19-69	30 M
3-50		19-64	49 M	4-67				39 M 48 M
4-62	16 E	20-76 E-11	59 M	5-79	26 E		20-81	
5-74	27 E	21 Full		6 New		1000	21 Full	
6 New		22+78	42 E	7+76	15 M		22 + 73	52 E
7+81	13 M	23+66	31 E	8+64	5 M		23+61	43 E
8+69	2 M	24+54		9+51	56 M		24+49	33 E
9+56	52 M	25+42		10+39	46 M		25+37	24 E
	4r M	26+30	IE	11+27	37 M			14 E
11+32	32 M	27 + 17	52 E	12+15	27 M		27+13	5 E
12+20	21 M	28+ 5	42 E	13+ 3	17 M		28 + 0	•
	12 M	29-6	27 E	14- 8	52 M		29-11	13 E
	59 M	30-18	37 E	15-21	2 M		30-23	-
-	IO M	December 1-30	47 E	16-33	11 M		31-35	33 E
16-28	19 M		18	86				
January 1-47	42 E	February 4+78	54 M	March 10+25	4 M		13-29	
2-59	52 E	5+66	43 M	11+12	54 M		14-41	-
3-72	2 E	6+54	33 M	12+ 0	42 M		15-53	
	IIE	7+42	23 M	13-11	28 M		16-65	54 M
5 New		8+30	14 M	14-23	39 M		17-78	4 M
6+71	31 M	9+18	4 M	15-35	49 M		18 Full	
7 + 59	21 M	10+ 5	54 M	16-48	I M		19+77	
8 + 47	II M	11-6	15 M	17-60	12 M		20+65	
9 + 35	2 M	12-18	26 M	18-72	22 M		21+53	7 E
10+22	52 M	13-30	35 M	19 Full			22+40	
11+10	44 M	14-42			16 E		23+28	
12- I	26 M	15-54	56 M	21+71	5 E		24+16	29 E
13-13	35 M	16-67	6 M	22+58	54 E		25+ 4	17 E
14-25	45 M	17-79	15 M	23+46			26- 7	
15-37	55 M	18 Full		24+34	32 E		27-20	8 E
16-50	5 M	19+76		25+22	20 E		28-32	
17-62	14 M	20+64	14 E	26+10	10 E		29-44	32 E
18-74	23 M	21+52	3 E	27 - 2	2 E		30-56	45 E
19 Full		22+39	53 E	28-14	13 E	May	1-68	57 E
20+81	18 E	23+27		29-26	24 E		2-81	10 E
21+69	8 E	24+15	32 E 22 E	30-38	36 E		3 New	
22 + 56	59 E	25+ 3		31-50	48 E		4+74	
23+44	49 E	26-8	49 E	April 1-62	59 E		5+62	13 M
24+32	39 E	27-20	59 E	2-75	9 E		6+50	IM
25+20	29 E	28-33 March 7-45	10 E 20 E				7+37	48 M
26+8	9E	March 1-45		4 New			8+25	-
	49 E	2-57 3-69	-	5+68	15 M		9+13	24 M
28-15	59 E 8 E		41 E	6+56	3 M		10+ I	
. 29–28 30–40	18 E	4-81 5 New	-	7+43	52 M		11-11	2 M
	28 E	5 New 6+73	Moon 47 M	8+31	40 M 29 M		12-23	
31-52 February 1-64	37 E	. 7+61	36 M	9+19			13-35	28 M
2-76	37 E	8+49	26 M	10+ 7 11- 4	17 M 54 M		14-47	
	Moon		15 M	11-4	6 M		15-59	53 M 6 M
3 110		973/	13 111	12-1/	0 111		16-72	0 M

+ = W. Longitude; M = Morning Terminator, or Sun-rising. - = E. Longitude; E = Evening Terminator, or Sun-setting.

Position of the Lunar Terminator (Midnight).

Days	Days o	1	Days o	1	Days o	1.	
May 17 Full Moon	July 14-73	6 M	September 9-49		November 5-24	5 M	1
18+83° 28'E	15 Full		10-61	34 M	6-36	15 M	1
19+71 15 E	16+82	27 E	11-73	46 M	7-48	25 N	1
20+59 3 E	17+70	14 E	12-85	58 M	8-60	36 N	1
21+46 49 E	18+58	οE	13 Full	Moon	9-72	46 N	1
22+34 37 E	19+45	48 E	14+69	38 E	10-84	57 N	1
23+22 24 E	20+33	36 E	15+57	25 E	' 11 Full		
24+10 II E	21+21	23 E	16+45	14 E	12+70	44 E	:
25-2 2E	22+ 9	8 E	17+33	ιE	13+58	35 E	
26-14 16 E	23-3	6 E	18+20	50 E	14+46	24 E	
27-26 28 E	24-15	19 E	19+ 8	38 E	15+34	13 E	
28-38 41 E	25-27	32 E	20-3	34 E	16+22	4 E	
· · ·		-	21-15	34 E 46 E			
29-50 54 E	26-39	45 E		-	17+9	52 E	
30-63 7 E	27-51	59 E	22-27	58 E	18-2	17 E	
31-75 21 E	28-64	12 E	23-40	9 E	19-14	27 E	
June 1-87 33 E		25 E	24-52	22 E	20-26	37 E	
2 New Moon	30 New		25-64	33 E	21-38	47 E	
3+68 o M	31+79	9 M	26-76	45 E	22-50	56 E	
4+55 47 M	August 1+66	55 M	27 New	Moon	23-63	7 E	
5+43 34 M	2+54	42 M	28+78	52 M	24-75	16 E	;
6+31 21 M	3+42	29 M	29+66.	41 M	25 New	Moor	h
7+19 7 M	4+30	16 M	30+54	29 M	26+80	23 M	1
8+6 55 M	5+18	3 M	October 1+42	17 M	27+68	14 M	
9-5 19 M	6+ 5	50 M	2+30	6 M	28+56	4 M	
10-17 33 M	7-6	23 M	3+17	54 M	29+43	55 M	
11-29 46 M	8-18	36 M	4+ 5	41 M	30 + 31	45 M	
12-41 59 M	9-30	49 M	5-6	29 M	December 1+19	45 M	
		3 M	6-18	40 M			
0 01 0	10-43		-		2+7	25 M	
14-66 26 M		15 M	7-30	52 M	3-4	45 M	
15-78 39 M		27 M	8-43	5 M	4-16	55 M	
16 Full Moon		40 M	9-55	14 M	5-29	4 M	
17+76 54 E	14 Full M		10-67	25 M	6-41	14 M	
18+64 40 E		54 E	11-79	36 M	7-53	24 M	i -
19+52 27 E		41 E	12 Full		8-65	34 M	í
20+40 15 E	17+51	28 E	13+76	12 E	9-77	42 M	í
21+28 IE	18+39	16 E	14+64	οE	10 Full 1	Moon	
22+15 46 E	19+27	ιE	15+51	48 E	II+77	59 E	
23+ 2 35 E	20+14	49 E	16+39	28 E	12+65	49 E	
24-8 39 E	21 + 2	36 E	17+27	17 E	13+53	39 E	
25-20 53 E	22-9	36 E	18+15	6 E	14+41	30 E	
26-33 6 E		49 E	19+ 2	55 E	15+29	20 E	
27-45 20 E	24-34	IE	20-9	16 E	16+17	II E	
28-57 33 E		14 E	21-21	27 E	17+ 5	IE	
29-69 45 E		27 E	22-33	37 E	17+ 5	8 E	
		39 E	23-45	47 E		17 E	
July I New Moon		52 E	24-57	58 E	20-31	26 E	
2+73 35 M	29 New 1		25-70	10 E	21-43	36 E	
3+61 22 M	· ·	43 M	26-82	21 E		46 E	
4+49 7 M		30 M	27 New		23-67	55 E	
		17 M	28+73	18 M	24-80	5 E	
6+24 42 M	2+36	5 M	29+61	8 M	25 New 2	Moon	1
7+12 29 M	3+23	52 M	30+48	57 M	26+75	36 M	
8+ 0 14 M		40 M	31+36	46 M	27+63	27 M	
9-12 0 M		32 M	November 1+24	36 M	28+51	18 M	
10-24 13 M		45 M	2+12	25 M	29+39	9 M	
11-36 27 M		57 M	3+ 0	14 M	30+26	59 M	
12-48 39 M		10 M	4-11	54 M	31+14	49 M	
13-60 53 M	- 3/		4 11	54	34 7 14	49 141	
-3 00 33 111							

THE COMETS OF 1886.

Three periodical comets are expected to return to perihelion in the year 1886. These are (1) a comet having a period of about $5\frac{1}{2}$ years, which was discovered by Tempel at Florence in November 1869. The return in 1875 was not observed, but it was re-discovered by Prof. L. Swift, of Rochester, New York, in October 1880, when the fact of its periodicity was determined. Perihelion passage will take place about April 21, 1886, but its position in the heavens will be very unfavourable for observation, and it is not likely to be seen again until its next return in October 1891.

(2) A comet, first discovered by Pons at Marseilles in June 1819, which is also moving in an ellipse with a period of about $5\frac{1}{2}$ years. It was re-discovered by Dr. Winnecke in 1858, and its periodicity was then determined by him. It was well observed in 1869 and 1875, but not in 1864 and 1880, when the circumstances were unfavourable. It is usually known as Winnecke's comet. Perihelion passage will take place about August 30, 1886.

(3) A comet of long period, discovered by Olbers in March 1815, is expected to return again to perihelion towards the end of 1886. It will probably be bright enough to be generally observed. A sweeping ephemeris from January to October 1886 has been published by Dr. Ginzel in No. 2,696 of the Astronomische Nachrichten.

Three comets, discovered in 1885, are visible at the present time. They are :-

(1) A comet discovered by Mr. Brooks, of Phelps, New York, at the end of December 1885. This comet passed its perihelion on November 24, 1885, and is slowly receding from the earth, and growing fainter.

(2) A comet discovered by M. Fabry at the Paris Observatory on December 1, 1885. This comet is only observable with large telescopes. Perihelion passage, according to the elements calculated by Dr. Oppenheim, will take place on April 4, 1886. The brightness is slowly increasing at present.

(3) A comet discovered by Mr. Barnard, at the Vanderbilt University Observatory, Nashville, Tennessee, on December 3, 1885. This comet is also very faint Perihelion passage will take place about May 5, 1886. The elements bear some resemblance to those of the second comet of 1785. Its brightness is slowly increasing at present.

BRAR

....

ADDENDA.

THE orbit of comet Fabry has been recently calculated by several astronomers, including Dr. S. Oppenheim and M. Lebeuf, and it appears from their investigations that this comet, instead of decreasing in brightness, promises to be a very conspicuous object in the circumpolar sky towards the end of April and the beginning of May. According to Dr. Oppenheim its brightness on May 1 will be over six hundred times greater than that at the time of discovery.

The orbit of comet Barnard has also been investigated by Dr. Heppenger, with a somewhat similar result. About the middle of May this comet will be nearly three hundred times brighter than at the date of discovery.

BROWNING'S ASTRONOMICAL TELESCOPES.

ASTRONOMICAL TELESCOPE

With 3-inch Achromatic Object-Glass of excellent quality, with brass body, one Terrestrial and two Celestial Eyepieces, in case complete. Guaranteed to be capable of dividing Double-Stars and showing Saturn's Ring and Jupiter's Belts.

> Price £6. 10s. Catalogue of Astronomical Telescopes sent Free.

SILVERED GLASS TELESCOPES AND SPECULA. SILVERED GLASS SPECULA, UNMOUNTED.

WITHOUT CELLS.

To meet the wishes of many applicants Mr. John Browning has made arrangements with Mr. With whereby the large stock of Specula, now in the possession of that celebrated artist, may be obtained by those who wish to possess one of Mr. With's Specula, but to do the mounting for themselves. The Specula so available are the choicest reserves and re-touches of Mr. With's productions.

To assist amateurs to the very utmost Mr. Browning will supply warranted planes, finders, eye-pieces, &c., of his own manufacture. indeed all those parts of the instrument which an amateur cannot as a whole make for himself.

The performance of these Specula will be guaranteed; they will bear a power of 100 to the inch on suitable objects, and under favourable conditions of the atmosphere.

Speculum, $4\frac{1}{2}$ -inch diameter about 5 ft. focus, $\pounds 2$. 10s. ; $6\frac{1}{2}$ -inch, about 6 ft. focus, $\pounds 5$; $8\frac{1}{2}$ -inch, $\pounds 8$; $9\frac{1}{4}$ -inch, $\pounds 12$; $10\frac{1}{4}$ -inch, $\pounds 16$; $12\frac{1}{4}$ -inch, $\pounds 22$; 13-inch, $\pounds 25$.

SILVERED GLASS SPECULA ASTRONOMICAL TELESCOPES, ON ALT-AZIMUTH STANDS.

4½-inch Speculum, 5 ft. focus, mounted on a stand, which can be changed from alt-azimuth to parallactic, so that the stars can be followed with one motion, with endless driving screw, and Hook's joint and two eye-pieces, 100 to 200 20 0 0 6½-inch Speculum, 6 ft. focus, on alt-azimuth stand, with quick and slow fine screw motions,

Full list of Prices sent free.

EXTRACTS FROM

'A PLEA FOR REFLECTORS,' being a description of the new Astronomical Telescopes, with silvered glass specula, and instructions for using and adjusting them by JOHN BROWNING, F.R.A.S.—Post free.

JOHN BROWNING, 63 Strand, London, W.C.

r.

J. H. DALLMEYER,

19 BLOOMSBURY STREET, LONDON, W.C.

INTERNATIONAL EXHIBITION, 1862.

"The Highest Award for his excellent Object Glasses and Equatorial Mountings."

PARIS INTERNATIONAL EXHIBITION, 1867.

"The Gold Medal for the best Telescope, and the Silver Medal for the best Photographic Lens."

REPORT BY ORDER OF THE COUNCIL ON EDUCATION.

"It is satisfactory to be able to record that the result of a trial by the jurors of the Refracting Astronomical Telescopes is to place Mr. Dallmeyer at the head of the list. The performance, power, and definition of his Equatorial, surpasses that of the other astronomical telescopes."

"J. H. Dallmeyer has been very successful in producing hand telescopes of a superior description; he exhibits some instruments, the focal lengths of which are only from nine to ten times the diameter of their clear aperture. The performance of these instruments is most excellent."—ILLUSTRATED LONDON NEWS, Oct. 5, 1867 (page 378).

PHILADELPHIA EXHIBITION, 1876.

"Highest Award for Telescopes, Microscopes, Photographic Lenses, and Apparatus."

PARIS INTERNATIONAL EXHIBITION, 1878.

"The Cross of the Legion of Honour and Two Gold Medals." Exhibit : Telescopes, Microscopes, Photographic Lenses, &c.

PHOTOHELIOGRAPHS.

Supplied to the Home and Foreign Governments.

CENTENNIAL EXHIBITION, PHILADELPHIA, 1876.

"Some very beautiful sharply defined pictures of the Sun, with interesting groups of Sun spots, are shown, and furnish a very satisfactory proof of the excellent Photoheliographic Apparatus, by means of which they were obtained."—*Vide* JUROR'S REPORT.

TRANSIT INSTRUMENTS, STAR-SPECTROSCOPES, &c. Instruments for Stellar Photography.

Descriptive Catalogue of Telescopes, Microscopes, Photographic Lenses, &., on application.

J. H. DALLMEYER, 19 BLOOMSBURY STREET, LONDON, W.C.

A. J. FROST, 6 Westminster Chambers, Victoria Street, S.W.

CLARK'S PATENT IMPROVED

TRANSIT INSTRUMENTS.

International Inventions Exhibition, 1885, Medal awarded.

These Instruments are of high quality, accurately adjusted, and well finished. The base is of cast iron, with large gun-metal levelling screws. The axis is of gun-metal, the trunnions resting on gun-metal bearings; the altitude or declination circle is silver-plated, and divided into 4 quadrants of 90 degrees with a vernier and spirit level reading to single minutes. It is furnished with a diagonal eye-piece with total reflecting prism, and three spider-web cross-wires, with collimating screws. There are two dark glasses for solar observation, and a delicate striding level is supplied with the Instrument. The optical power of the larger Instrument is sufficient to show the larger stars and planets in full daylight. The illumination of the cross-wires at night is effected by a front reflecting diaphragm, and the Instrument is provided with a candle lantern carried on an adjustable support. The ordinary axial illumination is supplied with the larger Instrument in addition.

CLARK'S WINDOW TRANSIT.

In addition to the above instrument another form can be supplied for the use of amateurs desiring a small portable and easily-adjusted Instrument. This Instrument has been designed for fixing upon a window-sill and requires no special stand. The base is entirely of gun-metal, and is handsomely finished, Price & ?. **10s. Od**.

Pamphlet post-free on application.

A. J. FROST, 6 Westminster Chambers, London, S.W.

MAWSON & SWAN'S ASTRONOMICAL TELESCOPE.

Complete, with Stand and Box, £5.

Of superior construction. Is fitted with $2\frac{3}{4}$ -inch Object Glass of Best English manufacture. Day and Night Eye-pieces. Highly finished Brass Stand, &c. Complete in box.

A cheaper form, fitted with Day and Night Eye-pieces, 2-inch Object Glass of good quality, French make, price £2. 15s.

A very useful Instrument.

SWAN LAMPS

FOR

ASTRONOMICAL TELESCOPES.

The small $2\frac{1}{2}$ -candle Swan Lamp has been most successfully employed for lighting up the Micrometer Scale &c., in Telescopes in many of the large and most important Observatories.

The four or five-cell modified Leclanché Battery, controlled by a simple switch, answers admirably for this work.

PORTABLE PRIMARY BATTERIES,

For working the small Swan Electric Lamps.

Catalogues of Chemical, Photographic, Electrical and Microscopical Apparatus on application.

MAWSON & SWAN, Mosley Street, Newcastle-on-Tyne.

THE 'COLLEGE' TELESCOPE.

This Instrument has a brass body, with rack and pinion adjustment; is 38-in. long and 3-in in diameter. Mounted on a brass pillar, with horizontal and vertical movements and japanned claw stand. The Day Power is 40-dia., and the Huyghenian Astro Eyepiece magnifies 90-dia. The latter is fitted with a dark glass.

Price

£5. 5s.

PACKED IN PORTABLE PINE CASE.

Illustrated Catalogue of Astronomical Telescopes, just published; Gratis, on application, or by Post One Stamp.

HORNE, THORNTHWAITE, & WOOD, 416 STRAND, W.C., AND

E. G. WOOD,

74 CHEAPSIDE, E.C.

W. WRAY, Optician,

MANUFACTURER OF

ASTRONOMICAL TELESCOPES.

EQUATORIAL and other MOUNTINGS, EYEPIECES, &c. &c.

MICROSCOPE OBJECTIVES AND MICROSCOPES.

PHOTOGRAPHIC LENSES, &c. &c.

Illustrated Catalogue Free.

LAUREL HOUSE, NORTH HILL, HIGHGATE, LONDON, N.

WORKS ON THE TRANSIT INSTRUMENT. By LATIMER CLARK, M.I.C.E.

Crown 8vo. price 1s.

MANUAL OF THE TRANSIT INSTRUMENT.

This work gives all the information requisite for taking time by the Transit Instrument. By the aid of the Tables mentioned below, anyone can take transits without any previous knowledge of the subject.

Demy 8vo. cloth 5s.

A TREATISE ON THE TRANSIT INSTRUMENT

As applied to the determination of Time.

This work gives a complete description of the Transit Instrument, and the adjustments and corrections required for obtaining accurate time in any part of the world. It forms an excellent practical introduction to the science of astronomy.

Crown 8vo. boards, price 2s. 6d. annually.

TRANSIT TABLES.

These Tables, which are published annually, give the transit of about twenty selected stars for every evening in the year in ordinary time, so that in taking time by the Transit Instrument no calculation of any kind is required. They are adapted for use in all parts of the globe.

> LONDON: E. & F. N. SPON, 125 Strand. NEW YORK: 35 Murray Street

